
the student, even if the separate concepts are, he will be unable to oper­
ate. Approaches to mathematics teaching that are largely content based 
will attempt to develop it logically and to develop all parts of the s~b­
ject in an ordered fashion-and this is admir~ble .. However,, more Im­
portant than the schema lying within the subJect (m Poppers world 3) 
are those in the mind of the student (world 2) (Popper ~973). W~ need 
to check with the students whether they find ~hat the. mformat~on con­
veyed fits what they have in their minds. An mterestm.g ex~enmen~, 
is to ask a number of people whether "minus times a mi_rms IS ~plus 
fits comfortably into their minds. When the student believes, nghtly 
or wrongly, that the idea does fit, then and only then should you move 
on. It is the "emotional acceptability" of what we are told or read that 
is the measure of whether we can advance. 

Most teachers check out whether their students understand, and by 
this they are addressing the cognitive. It is nece.ssary to ask whether 
they accept-and that is affective. Once the strmgs of. symbols. are at­
tached comfortably to those patterns we already have m our mmds, 
we are secure. 

Finally we should mention one counter-indicati~n to what we have 
said, and point again to one question discussed ear her but not resolve~. 
In the discussion on (~,"J) we did assume that the schema of two coordi­
nate axes, and the plotting of points was known and comforta~le.' Why 
did the use of unfamiliar symbols induce discomfort? Perh~ps It IS felt 
that they must convey something more, something mystenous- else 
why were such letters used? But the reason is not clear. 

As for why q is so "strange"-perhaps someone can help? 
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Mathematical Language and Problem Solving 

Gerald A. Goldin 

Problem solving in mathematics may require different kinds oflanguage: the 
verbal or mathematical language in which the problem itself is posed, the 
notational language of problem representations available to the solver, and 
planning language for heuristic reasoning and formulation of strategies. This 
paper explores some relationships among these languages, with examples of 
ways they can influence problem-solving processes. 

I Introduction 
Problem solving in mathematics refers to situations in which some 
items of information are given or available, and one or more goals are 
described. The problem solver is expected to attain the goal(s) through 
logical or mathematical procedures. Sometimes the term "problem 
solving" is restricted to the case in which the solver has no routine al­
gorithm available for this purpose. Mathematics educators have become 
increasingly interested in studying problem solving and improving its 
teaching (Polya 1962 and 1965; Harvey & Romberg 1980; Krulik 1980; 
Lester 1980). 

Kilpatrick (1978) proposed to organize the independent variables 
of problem-solving research into three main categories-subject vari­
ables, task variables, and situation variables-for the purpose of 
understanding how problem-solving outcomes depend on variables in 
each category. A collaborative study of task variables was conducted 
by a number of researchers (Goldin & McClintock 1979). In this work 
the characteristics of problem tasks were considered under the follow­
ing headings: syntax variables, describing the grammar and syntax of 
the problem statement; content and context variables, describing the 
semantics of the problem statement; structure variables, describing 
mathematical aspects of a problem representation; and heuristic be­
havior variables, describjp.g heuristic processes associated with or 
intrinsic to specific problems. Task variables were taken to be indepen­
dent of the individual problem solver, and defined instead with respect 
to a population of solvers. They are subject in principle to control by 
the researcher or the teacher. 
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Let us now distinguish among various kinds of language which can 
be employed during problem solving: the verbal language of the prob­
lem, notational languages, and planning language. 

A VerbalLanguage 
The verbal language in which the problem itself is posed may be a 
natural language such as ordinary English, and may include technical 
terms from mathematical English. Task syntax variables are descrip­
tive ofthis language. Barnett (1979) reviewed a large number of studies 
on syntax variables, organizing them into the following categories: 
variables describing problem length; variables describing grammati­
cal complexity; formats (verbal or symbolic) of numbers or other mathe­
matical expressions; variables descriptive of the question sentence; 
and the sequence of information in the problem statement. Linear re­
gression studies have indicated that variables oflength and gramma­
tical complexity, defined in various ways, do affect the difficulty of 
verbal problems in arithmetic (Loftus 1970; Beardslee & Jerman 1973), 
but have provided little insight into how this occurs. 

The problem statement is often descriptive of a "real-life" situation 
which can be pictured or visualized. Content and context variables, 
reviewed by Webb (1979), describe the semantics of the problem state­
ment. The term "content" refers to mathematical meanings, and the 
term "context" to nonmathematical meanings, insofar as this distinc­
tion can be maintained. Sometimes a problem posed in words may be 
accompanied by a picture or diagram; then we regard this picture 
as part of the problem content or context. 

B Notational Languages 
Notational languages available for problem solving, unlike ordinary 
language, are highly structured formal systems. They may have strict 
semantical rules for writing well-formed expressions, and a well­
defined set of allowed transformations from one expression to another. 
Examples include the notations for our system of numeration, for 
arithmetic operations, for fractions, decimals and percents, for 
algebra, trigonometry and calculus, for set theory and symbolic logic, 
and diagrams picturing allowed constructions in Euclidean geometry. 
Evidently a great deal of the teaching of mathematics is devoted to 
communicating the rules for working within such languages. 
Once a problem has been translated into a notational language, purely 
formal manipulation of symbols according to the rules of procedure is 
usually sufficient to arrive at a solution. Nevertheless, the symbol-
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manipulation may continue to be motivated by visualization of the 
"real-life" situation that the notation now describes. 

The concept of a problem state-space has been employed to describe 
the mathematical structure of problems, as well as to map the behavior 
paths of subjects (Goldin 1979). As defined by Nilsson (1971), a state­
space for a problem is a set of distinguishable problem configurations, 
called states, together with permitted steps from one state to another, 
called moves. A particular state is designated as the initial state, and 
a set of goal states is distinguished by the conditions of the problem. 
When a problem can be translated into a standard notational lan­
guage, the mathematical sentence or diagram which is the most direct 
translation becomes the initial state. A notational language thus pro­
vides a standard representational framework in which the state-spaces 
of many problems can be embedded. Sometimes for non-standard prob­
lems, the solver is in effect presented with a new notational language, 
with simply stated rules of procedure, and the object is to "learn" the 
language in proceeding from the initial symbol-configuration to the 
goal. A problem state-space is thus a notational language in miniature. 

C Planning Language 

Finally we h!ive the language available to the problem solver for 
heuristic planning or formulation of strategies. This is the language 
in which the solver establishes subgoals, organizes trial-and-error 
search, seeks analogous problems, or engages in the many other forms 
of planning described by Polya. Thus it is a language about prob-
lem solving as well as a language for problem solving. It appears that 
children and adults engage in heuristic planning to a considerably 
greater extent than they can describe explicitly. One of the goals of 
protocol analysis in studying problem-solving behavior is to describe 
from an information processing standpoint the planning which occurs, 
based on a transcript of a subject's "thinking aloud" statements. It 
would be valuable to systematize such language so that it could be 
used in the teaching of problem solving. 

Figure 1 shows the various levels of language available for prob­
lem solving. The perspective of this paper is to treat all of the levels of 
language as "existing" apart from the individual problem solver, defin­
ing them in relation to ~population of problem solvers sharing a 
common "mathematical language." 

223 Goldin I Language & Problem Solving 

•• 



eli 

..... Planning language : ~ 

heuristic behavior 
t alks about and variables elici talks about motivates steps in ts 

c i ts 

t a l ks abou t 

-
l translation Notational langua ge 

Language of the (prob lem representation ) : 
problem statementJ ~ s truc ture variables 
syntax variables 

elicits des cribes 

I ll 
Non- verbal s ymboliza tion 
of "real-life" s ituation 

sugge:~ 
describes described by problem: 

con t ent and context 
variable s 

Figure 1. Relationships among levels of language available for problem solving. 

II Examples 
In this section we describe two examples which il!ustrate the ~oncepts 
introduced above. In addition they illustrate the Imp~rtant pomt that 
small changes in the statement of a problem can result m ~arge changes 
in problem-solving processes, even when the mathematical structure 
of the problem is held fixed. 

A Plants and Flowerpots, Cats and Dogs . . . 
The following problems were used with elem~ntary,Jumor_high, and 
senior high school students (Caldwell & Goldm 1979; Goldm & Cald-

well1979): 
1 Alan bought an equal number of plants and flowerpots. Each 
plant cost three dollars and each flowerpot co~t five dolla~s, so that 
he spent 48 dollars in all. How many plants did Alan buy· 
2 Jane has an equal number of dogs and cats. If she had twice ::'-s 
many dogs and four times as many cats, she would have 42 pets m 
all. How many dogs does Jane have? 

The two problems were originally intended to be parallel, except t~at 
the first problem is stated factually and the second ?as a hypothetical 
component. It turned out that Problem 1 was less difficult than Prob-
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lem 2 for every school population studied, but not necessarily for the 
reason expected. 

The languages of the problem statements have values for syntax 
variables which are quite close. Both problems have three sentences; 
Problem 1 has 33 words and Problem 2 has 34 (excluding articles). 
Both problems contain three items of numerical information, with the 
first two (small) numbers written in words and the third (larger) num­
ber written as a numeral. The grammatical complexity of the two prob­
lems is comparable, as measured by a "syntactic complexity coefficient" 
developed by Botel, Dawkins, and Granowsky (1973). The question 
sentences occur at the end of both problems, and are of exactly parallel 
length and grammatical construction. The two problems differ in syn­
tax in the factual/hypothetical variable. There are other minor syntactic 
differences as well; the second problem, for example, uses the pronoun 
"she" twice, while the first uses the pronoun "he" but once. 

The notational language of algebra provides a standard 
representation for each of these problems (unlikely to be available, of 
course, to the students in elementary or lower junior high school grades). 
With the obvious choices ofletters for unknowns, Problem 1 t ranslates 
to: P = F, 3P + 5F = 48; while Problem 2 translates to: D = C , 2D 
+ 4C = 42. Tl'l.ese two systems of equations can be solved in exactly 
the same manner, and in exactly the same number of steps, to yield 
P = 6 (for the first problem) and D = 7 (for the second). We therefore 
say that in this representation, the two problems have the same struc­
ture. An alternate notationa l language, often used by younger children, 
involves the use of"guess and check" procedures. For example, the 
child may first make a "guess" as to the number of plants, and compute 
the total cost. If this is too low, a new "guess" is made. Schematically, 
we have something like this: "If 1 plant, 1 flowerpot , 3 + 5 = 8, too 
low; if 2 plants, 2 flowerpot s, 3 x 2 = 6, 5 x 2 = 10, 6 + 10 = 16, st ill 
too low; ... . " until the t rial "6 plants" occurs. This procedure can also 
be used to find the number of dogs in the second problem. Some chil­
dren are able to carry out these procedures aloud, without the use of· 
written notation at all. Whether written or ora l, it is convenient to 
think of the procedure as occurring in a formal language cont aining, 
for example, "trial" statements and "comparison" statements acting 
on a domain of whole numbers (the "search space"). Such procedures 
have been examined by Harik (1979). 

The planning which takes place when these problems a"re solved is 
often silent. The algebra student may say, "First I will write down 
some equations, then I will solve them," and the grade school student 
may comment, "Let's try some numbers. " Along the way, additional 
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Figure 2a. One way to visualize 
the plants and flowerpots. 
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Figure 2b. One way to visualize 
the cats and dogs. 

planning may occur aloud; for example, "Skip some numbers." Most 
often the observer is left to infer the nature of the planning which 
occurred, through analysis of the solver's verbal protocol. 

'furning to the process oftranslation from the problem statements to 
algebraic notation, we note that these problems contain "key words"­
words which very frequently translate to particular mathematical 
operations. For example, the phrases "Each .. . cost" and "times as 
many" translate to multiplication ( x ), while "in all" translates to addi­
tion ( + ). Since such terms occur nearly in parallel in the two problems, 
students who translate directly from the problem statement to nota­
tionallanguage (as in Figure 1) should arrive at parallel systems 
of equations. 

On the other hand, the real-life situations described by the two 
problem statements are quite different. Figure 2 depicts one way in 
which these may be visualized. This difference allows the following 
method of solution for Problem 1 , which is not available for Problem 
2. In Problem 1 the picture suggests: "Each plant cost $3 and each 
flowerpot cost $5, so that the pair cost $8. Since Alan spent $48, he 
bought 48 -;- 8 = 6 plants." The analogous line of reasoning for Prob­
lem 2 is extremely awkward to phrase or to visualize, even though the 
problems are of corresponding mathematical structure. For this rea-
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son, the original intent of creating problems which were parallel except 
for the factual/hypothetical variable was not entirely achieved. Refer­
ring again to Figure 1, the language of the problem statement de­
scribed a "real-life" situation which in turn suggested a notation (3 + 
5 == 8, 48 -;- 8 = 6) different from that obtained by direct translation, 
and in this case more efficient. 

B A Checkerboard and Paper Clips 
This well-known problem provides a second example for discussion: 

3 Consider an 8 X 8 arrangement of squares, from which diagon­
ally opposite corner squares have been removed (Figure 3). A paper 
clip may be placed so as to cover two squares adjacent horizontally 
or vertically, as in the illustration. Can all the squares be covered 
by paper clips without overlap? If so, how; if not, why not? 

The problem statement describes a concrete apparatus which itself 
can serve as a notation for making moves. Often solvers proceed to 
experiment by placing paper clips, until after several trials they ac­
knowledge their inability to achieve the goal. During this stage of 
problem solving, little overt planning may occur. Atwood, Masson, 
and Polson (1~80) discuss a model for problems which are similar to 
this one in that successor states are generated from an initial state by 
application of a single rule of procedure. Their basic assumption is 
that subjects do not plan, but use only information from the current 
problem state and those which immediately follow to make each move. 
In a study of "water jug" problems, they found their model to account 
adequately for subjects' behavior. It may well be the fact that a nota­
tion is provided by the problem itself which encourages subjects, at 
least initially, to restrict themselves to mechanical moves within 
the notation. 

In Problem 3, however, planning is necessary if the solver is to 
proceed beyond the observation that the trials do not succeed. More 

@: P> "' l!J 

•" 

Figure 3. 
Diagram for Problem 3. 
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Figure 4. 
Trying to solve 
a simpler problem. 

sophisticated or "educated" problem solvers might even engage in 
planning from the start. For example, the heuristic advice, "Try to 
solve a simpler related problem," may lead to examination of the 2 x 2 
case (clearly impossible), the 3 x 3 case (impossible since there are an 
odd number of squares), and the 4 x 4 case, which is quite similar to 
the given problem but allows much more rapid exploration (Figure 4) . 
Trials on the 4 x 4 case may lead to the observations that diagonally 
attached squares often remain uncovered after a trial, and that the 
same squares seem to remain in a variety of trials. 

One way to achieve insight into this problem is to improve the 
notation by coloring those squares which remain after various trials. 
'The decision to do this requires the ability to think or talk about the 
language being used to represent problem states; i.e., to think on the 
level of planning language. The pattern of colored squares which re­
sults is that of an ordinary checkerboard. Now it can be observed that 
a paper clip always covers a colored square and a white square. Since 
in the initial 8 x 8 problem there were 32 colored squares and only 
30 white squares, and they are being reduced in equal numbers, the 
squares cannot all be covered by paper clips- there will always be 
two colored squares left over. 

Possibly Problem 3 would be less difficult if its statement re-
ferred to "an 8 x 8 checkerboard" instead of "an 8 x 8 arrangement 
of squares," or if one set of squares were shaded in the diagram. The 
original notation was less effective because essential information was 
not visually apparent in the representation of a state (although it 
could have been obtained of course by counting). Again a small change 
in the problem statement, which does not affect the problem structure, 
suggests a substantial change of notation which in turn facilitates 
the problem solution. 

III Efficient Notational Language and 
the Structure of Problem Representations 

This section first looks at examples of efficient and inefficient notation 
in standard representational frameworks. Then we examine how, in 
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non-standard representations, the choice of symbolism can illuminate 
or conceal important structural features such as problem symmetry, 
or affect the complexity of each move. 

A Standard Languages of Mathematics 
Much of the progress of mathematics across history is attributable to 
the development of improved systems of numeration and modern 
algebraic notation. Arithmetic problems which would have posed 
formidable challenges in ancient Greece or Rome can be solved by to­
day's school-children. The process of experimentation and notational 
change is an ongoing one today in algebra and analysis. From the per­
spective of problem solving, an effective notation should have certain 
characteristics, among which are the following: (1) Symbol-configura­
tions should be reasonably concise, with information most likely to be 
important made visible rather than suppressed. The number of steps 
needed to move from one configuration of symbols to another should 
be small. (2) 'lb the extent that concepts are parallel mathematically, 
they should be represented in parallel syntactically. '1\vo examples 
will illustrate these points. 

When the "pew mathematics" was introduced in the 1950's and 
1960's, precision of meaning in notation was sometimes emphasized at 
the expense of problem-solving effectiveness. The "raised minus sign" 
was introduced to denote negative numbers (additive inverses), and 
-3 was called "negative three," not "minus three." "Minus" was re­
served for the operation of subtraction, with "8 - 6" defined as 
"8 + - 6." Operations such as addition, subtraction, multiplication, 
and division were treated strictly as binary operations (acting on two 
numbers at a time), and each step had to be justified with reference to 
the appropriate structural property of the number system (associative 
property for addition, commutative property for multiplication, etc.). 
A consequence of rigid adherence to these rules might be the following 
sequence of steps in algebra: 3X + 7 = 19 [given], (3X + 7) + -7 = 
19 + -7 [addition of the same number to equals yields equals], 
(3X + 7) + - 7 = 19 - 7 [definition of subtraction], (3X + 7) + - 7 = 
12 [renaming], 3X + (7 + -7) = 12 [associative property for addi­
tion], 3X + 0 = 12 [additive inverse], 3X = 12 [additive identity], 
(1!3)(3X) = (113)12 [multiplication of equals by the same number 
yields equals], ((113)3)X~ (113)12 [associative property fo:r:.multi­
plication], ((113)3)X = 4 [renaming], 1X = 4 [multiplicative inverse], 
X = 4 [multiplicative identity]. 

Obviously the purpose of an exercise such as the above is to develop 
a sophisticated awareness of the use of axioms, and not to facilitate 
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efficient problem solving. The efficient problem solver would write 
3X + 7 = 19, 3X = 19 - 7 = 12, X = 12 + 3 = 4. Unfortunately 
many teachers and textbooks stressed the precision of the axiomatic 
notation at the expense of facility with the usual notation, and basic 
computational and problem-solving skills suffered. The axiomatic 
language in this case requires more steps, and is less concise. 

An example of notational improvement is taken from the APL 
computer language (Iverson 1966 and 1969). It is common to write 
max {a,b} to denote the larger of two real numbers a and b, and a b to 
represent a taken to the b th power. In APL these and many other 
operations are assigned special symbols, and treated as binary func­
tions. Thus, 3 1- 7 denotes the larger of3 and 7, having the value 7; 
2 j 5 stands for 2 to the 5th power, and has the value 32. Borrowing 
just these symbols from APL and incorporating them into ordinary 
arithmetic, we see that their place in the syntax becomes the same as 
that of +, -, x , and +. Structural properties for + and x , such as the 
associative and commutative properties, can now be tested for r and 
j <1- is commutative and associative, j is neither). The distributive 

property for multiplication across addition, which states (left distri­
butive property) that a x (b + c) = (a x b) + (a x c )for all real 
numbers a, b, and c, can be generalized and tested for various pairs of 
operations: for example, a + (b 1- c) = (a + b) r (a +c). 

Thus the principle of using syntactically parallel notation tore­
present mathematically parallel concepts allows greater insight at the 
elementary level into the meaning of structural properties ofbinary 
functions. APL contains many other notational innovations which 
have potential application to the teaching of mathematics (Peelle 1974 
and 1979). 

B Non-Standard Problem Representations 
Sometimes a standard representation is not available-either the 
problem itself poses a novel symbol-configuration together with rules 
of procedure, as in the "checkerboard problem" above, or the solver is 
expected to construct a new representation for the problem. State­
spaces for such problems have been used to define task structure 
variables, to characterize "relatedness" between problem representa­
tions, and to record the behavior paths taken by subjects (Goldin 1979). 
'1\vo problems are said to be isomorphic when the states, legal moves, 
and solution paths of one can be placed in one-to-one correspondence 
with the states, legal moves, and solution paths of the other. A pro­
blem has symmetry if it is isomorphic to itself in more than one way. 

We shall consider the example of the Tower of Hanoi problem and 
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its isomorphs, which have been studied by several authors (Simon & 
Hayes 1976; Hayes & Simon 1977; Luger 1979; Luger & Steen 1981): 

4 Four concentric rings (labeled 1, 2, 3, 4 respectively) are placed 
in order of size, the smallest at the top, on the first of three pegs 
(labeled A, B, C), as in the diagram: 

1. 
2. 
3 . 
4. 

A B c 

The object of the problem is to transfer all of the rings from peg A to 
peg C in a minimum number of moves. Only one ring may be moved 
at a time, and no larger ring may be placed above a smaller one on 
any peg. 

The complete state-space for this problem is shown in Figure 5. Each 
state is labeled with four letters, referring to the respective pegs on 
which the four rings are located. From the network of states the 
problem sy~etry is apparent- the roles of pegs A, B, or C can be 
exchanged without changing the structure of the problem. In 
particular, state BBBB is conjugate to the goal state CCCC, but is not 
itself a goal. The state-space displays forward-backward symmetry in 
that if CCCC is taken as the initial state and AAAA as the goal, the 
problem structure is unchanged. 

CAAA 

BBAA . 
BBCA . 

CCCA 

. ABC» 

CABB 

BBBB .. 

• AAAA (start) 
. BAAA 

. BCAA 
. CCAA 

. CCBA 

BBBA 
. BBBC 

Figure 5. 
State-space representation 
for the 4-ring 
Tower of Hanoi problem. 

AABC 

ecce (goal) 
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Figure 6. State-space 
for "monster-globe" 
problems of 
Hayes and Simon, 
isomorphic to 
the 3-ring Tower 
of Hanoi problem. 

start for remaining t "monster-globe" problems 

In the above version of the problem, studied by Luger, the pegs and 
the board present the solver with a notation for keeping track of 
moves and solvers proceed by means of successive trials. This nota­
tion is'extremely efficient for determining the availability of legal 
moves, but it does not preserve information about the history of moves 
which have occurred. The symmetry that is present is overt- "there 
to be noticed"- in the external representation. During the course of 
problem solving, some solvers who have started on a path headin_g "to­
wards" state BBBB in the state-space in Figure 5 come to recognize 
the symmetry, and are able to correct to the symmetrically conjugate 
path leading to the goal. Additional discussion of symmet~y as a task 
variable, and of overt vs. hidden symmetry, may be found m the re­
ferences (Goldin 1979; Luger 1979; Goldin & McClintock 1980; Luger 
& Steen 1981). . 

Hayes and Simon employed isomorphs of the 3-ring 'lbwer of Hanoi 
problem in order to study the effects of changing the problen: stat~­
ment on the notations adopted by subjects. The tasks were eight dif­
ferent "monster-globe" problems, stated in complicated language:. all 
of which (when represented most efficiently) had state-spaces as m 
Figure 6. The tasks differed from each other in two ways: In Transfer 
problems a monster or globe was moved, while in Change problems a 
monster or globe changed size. Secondly, in Agent problems the mon­
sters moved or changed the globes, while in Patient problems they 
moved or changed themselves. Some of the problems also differed from 
the others in the description of the initial state. 
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--- ... 

Since no external notational language was presented to subjects 
beyond the problem statement, it was necessary for them to devise 
their own. Three main types of notation were "invented" under these 
conditions, called "operator-sequence" notation, "state-matrix" nota­
tion and "labeled-diagram" notation. These notations preserved the 
hist~ry of moves, but were of varying efficiency for testing the legality 
of moves, and not nearly so efficient as the rings-and-pegs apparatus. 
The types of notation remained relatively constant in frequency across 
problem variables. However, Transfer problems and Change problems 
elicited different notations within the broader categories of operator­
sequence and state-matrix notations, and Agent and Patient problems 
elicited some differences within the operator-sequence category. For 
example in the operator-sequence category, indirect naming of objects 
was used more frequently with Change problems than with Transfer 
problems. In the state-matrix category Transfer problems resulted in 
symbols being moved from column to column, while Change problems 
resulted in symbols being altered within each column. Hayes and 
Simon postulate how the notational differences might have been 
caused by the differences in the problem statements. 

It was observed that Change problems required greater times to 
solution. Chang~ problem notations required more steps to test the 
problem conditions in selecting legal moves than did Transfer problem 
notations. This study is convincing in demonstrating how the choice of 
notation may affect problem difficulty through increasing the com­
plexity of move selection. 

In a discussion of the well-known "missionary-cannibal" problem, 
the author has suggested that the extra steps needed to test moves for 
legality may be described by enlarging the formal state-space to in­
clude additional "testing" moves (Goldin 1979, p. 135). In the present 
case this would result in a more complex state-space in which the 
states of Figure 6 are embedded. Such an embedding of one state­
space into another is an example of one kind of state-space homo­
morphism. In general, homomorphisms may be used to describe the 
different kinds of relatedness which can exist between alternate pro­
blem notations. 

The preceding examples lead to the following observations about 
efficient notational language: (1) Features of problem states which 
have to do with nearness to~olution (as we saw in Problem 3j__should 
be visible in the notation. (2) Problem symmetry should be overt ra­
ther than hidden wherever possible. (3) Problem representations are 
more efficient when the information needed to move from one symbol­
configuration to the next is visually apparent in t he notation, or re­
quires few steps to obtain from each state. 

233 Goldin I Language & Problem Solving 



IV Planning Language 
This section focuses very briefly on the specialized domain of ordinary 
English devoted to heuristic planning. It is plausible that just as nota­
tional language can be efficient or inefficient for problem solving, so 
can planning language. Explicit attention to language at the planning 
level would then be necessary before we can teach problem solving in 
the same way that we now teach students mathematical notation. It 
may be valuable to introduce planning symbolism in order to make 
more visible the steps in the planning process. 

Polya (1945) proposed to organize heuristic processes into four main 
stages: understanding the problem, devising a plan, carrying out the 
plan, and looking back. Much of his subsequent work was devoted to 
elaborating on the processes contributing to each stage. Wickelgren 
(1974) sought to improve problem-solving planning by introducing 
more technical language from artificia l intelligence research - for 
example, he discusses "hill-climbing" which is a metaphor for state­
space search algorithms with evaluation functions used in mechanical 
problem-solving programs. Schoenfeld (1979) devised a more elaborate 
stage model for organizing heuristic processes, reproduced in Figure 7. 

An earlier version of Schoenfeld's model formed the basis for an ex­
traordinarily detailed process-sequence coding scheme developed by 
Lucas et al. (1979), in which over fifty different symbols are used to rep­
resent process and outcome categories observed during problem sol­
ving. More recently, the author worked with Carpenter, Kulm, Schaaf, 
and Smith toward grouping these into a more manageable system for 
recording the processes used by junior high school students (Kulm, et 
al. 1981). This system is still undergoing revision, but in order to con­
vey its flavor a partial dictionary is given in Figure 8. Next to each 
process code, the language level to which this code refers, or the trans­
lat ion process to which it refers, has been indicated. Thus a correspon­
dence can be drawn between the observed processes in problem sol­
ving, and the kinds oflanguage depicted in Figure 1. 

The domain of planning language about which we can say the most, 
based on examples in t his paper, is that which governs or talks about 
notational language. Silver, Branca, and Adams (1980) have examined 
the role of "metacognition" in ·problem solving. In fact, planning 
language as described in the present paper is a "meta-language" with 
respect to formal problem-solving notations. It includes the following 
kinds of steps: adoption of a notational language; choice of a goal or 
subgoal state within a notational language; modifying notational lan­
guage to describe simpler problems; modifying notational language to 
reduce the complexity of moves; modifying notational language to 
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ANALYSIS : Understanding t he statement 
Simplif ying the problem 
Reformulationg the problem 
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~ Schema tic Solution 
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Specific tests 
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• 6 Genera l Solution 

--> -
r 

EXPLORATION: 
Essentially equiva l ent 

problems 
Slightly modif ied prob l ems 
Broadly modified problems 

Figure 7. Schoenfeld's schematic overview of problem-solving stages 
(abridged from Schoenfeld 1979). 

make symmetry more overt; and modifying notational language to 
make more visible features of problem states describing nearness to 
solution. In our discussion we have seen examples of how such nota­
tional modifications could greatly assist the problem solver. The in­
efficient or naive planner is unable or unwilling to t ake such steps. It 
therefore seems reasonable to conjecture that explicit introduction of 
~la~ing l.anguage into problem-solving instruction, including pract­
Ice m talkmg about problem notations and evaluating their effective­
ness, could substantia lly improve higher problem-solving skills. 
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Symbols, Icons, and Mathematical Understanding 

William Higginson 

Extracts are taken from the biographies of Hobbes, Rousseau, Darwin, and 
Russell which refer to their mathematical education. The common feature of 
an attraction toward geometry and an aversion to elementary algebra is noted. 
These experiences are analysed using theoretical positions promulgated by 
Davis, Hersh, Skemp, and Bruner. The central thesis is that these men pro­
bably have had difficulty learning elementary algebra because they had failed 
to develop a strong image or iconic representation of the concepts involved. 
This thesis is developed in relation to "squaring a binomial," the concept which 
troubled both Rousseau and Russell. 

Mathematics is often considered a difficult and mysterious science, 
because of the numerous symbols which it employs. 
A.N. Whi1ehead 

Much of the power of mathematics stems from the potency of its sym­
bols. There is, however, a price to be paid for this potency. The symbols 
which serve as highly effective tools for some are the most formidable 
of barriers for others. In the following pages a thesis is outlined which 
attempts to account for some of the difficulties which learners meet 
when studying mathematics. The method of approach is largely bio­
graphical; the essence of the argument: that we have paid too little 
attention to the role of images in mathematical understanding. 

The unique cluster of insights, associations, and emotions which 
characterizes every encounter of individual with idea is never easy to 
capture. One of the few sources to which we can turn in such a quest is 
biographical literature. The examination of this literature for accounts 
of man meeting mathematics reveals some interesting commonalities 
in the experiences of a number of people. For our purposes we consider 
four distinguished thinkers; Thomas Hobbes (1588-1679), Jean­
Jacques Rousseau (1712-,],778), Charles Darwin (1809-1882), and 
Bertrand Russell (1872-1970). "-

One of the most striking features of John Aubrey's marvelous col­
lection of short biographies, Brief Lives, is the picture it gives of the 
impact of the release of the mathematical sciences from the Greek and 
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