
The activities of doing, talking, and recording are classroom acti­
vities which facilitate the corresponding shifts in psychological states 
described in Mason (1980), moving from 

Enactive to Iconic, that is from confident manipulation of specific 
instances to getting a sense of a common generalization; 

Iconic to Symbolic, that is articulating the sense of generalization 
as a sequence of conjectures which are modified until they crystal­
lize into an articulate and recorded statement which captures 
the notion. 

The transition from Symbolic to Enactive, that is from an abstract 
form which is constantly referred back to examples to recall its 
intention, to a confidently manipulable entity which can serve as 
a component in a new, higher order notion, 

requires practice to achieve mastery of the symbols. This is the true 
role of exercises in the mathematics classroom. 

Reference 
Mason, J. H. (1980). "When is a symbol symbolic?" The Learning of 

Mathematics, 1 (2 Nov.), 8-12. 
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Mental Images and Arithmetical Symbols 

L. Clark Lay 

Experiments by psychologists have led to the conclusion that images play an 
indispensable, if subordinate, role in thought as symbols. An analysis is begun 
of the mental images that are judged to be properly evoked by certain number 
symbols of arithmetic. A variety of graphical models are suggested for use in 
linking these symbols to the desired mental construct. Some of these models 
have been found to be advantageous and may prove to be critically essential in 
certain mathematical contexts. Their assets and liabilities are discussed, and 
suggestions are made for modifications of conventional curriculum practice. A 
rich field of investigation exists in the visual imagery that can be associated 
with elementary mathematics. Progress here holds promise of extending 
mathematical competence to a larger portion of society. 

The role of imag~ry in human thought has been studied by Piaget 
and Inhelder (1971), particularly as it relates to Piaget's well 
known genetic model of intellectual development. Their experi­
ments led these authors to the conclusion that images play an indi­
spensable, if subordinate, role in thought as symbols. In our paper 
an analysis is begun of the mental images that are judged to be prop­
erly evoked by certain symbols of arithmetic. The emphasis will be 
on graphical models that can be used to link such symbols to the 
desired mental construct. 

An experiment 
The reader is invited to join in the following experiment. Writing 
materials such as a pencil and paper should be available. In a moment 
you will be presented with a very familiar symbol. You are asked to 
respond to this symbol, in the following manner: 

Imagine yourself giving a verbal explanation of the meaning of this 
symbol to a person for whom it is not as yet familiar. Assume that the 
verbal discussion has not gone as well as you had hoped, and that it 
has occurred to you that a sketch or diagram of some sort might be 
helpful. You are asked to show your choice for this purpose. It is of 
particular interest that you record the first image that comes to your ~ 

mind when this symbol is presented. If, upon further reflection, you 
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can think of other sketches you might use, we will be interested both 
in their variety and in the order of their coming to your mind. 

Ready? The symbol to which you are to respond is "5"; t he numeral 
for the number five. What image did 5 first evoke in your mind? 

As an alternate experiment, the word five can be given orally, 
although I have not found this to affect the results to a significant 
extent. For the past many years the author has tried this experiment 
with subjects of wide diversity of attainment in mathematics, ranging 
from primary school pupils to university graduate students. When the 
study is limited to the initial response, there has been a uniform 
consistency in the type of diagrams that are drawn. 

With very few exceptions the image that seems first to come to mind 
is that of an array of five separate but similar objects. These may be 

just five vertical lines, \ll \ \ , or these may be tied together as the 

tally .1-ttf, or there may be an arrangement in a characteristic 

pattern such as for a domino, -l< -l< -l< • Other subjects may show the 
-iC -tc 

fingers and thumb of one hand, or they may represent a collection of 
recognizable objects such as flowers, apples, or r abbits. 

It would seem that even for those who have acquired a consider­
able sophistication in mathematics the symbol5 is first perceived in 
its relation to counting as enumeration. But there is a considerable 
variety of ways to think of five. Some of these are not only advanta­
geous but may even be critically essential in certain mathematical 
contexts. And these situations need be no more complex than those 
commonly introduced in the elementary schools. A list of twelve such 
representations of the number five appears at the close of this paper. 
These will be discussed in turn. 

Numbers as counters 
The first five letters of the English a lphabet can be listed as; a,b,c,d,e. 
The acceptance of this collection ofletters as a single whole can be 
aided by enclosing t he given list by braces, { }. A temporary name, 
such as the letter S, can then be assigned to this collection, or set, 
ofletters. Let #( ) be an operator; a symbol which directs that the 
number of members in the set be determined by counting. We then 
say that the number five is thus represented as the cardinal number 
of a set. 

S = {a, b, c, d, e}; #(8) = 5 
During the mathematics education reforms of the 1960's this 

set representation of numbers was widely advocated, even for the 
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first introduction to number concepts. For various mathematical 
~nve~tigations, particularly those at an advanced level involving 
mfirute sets, the advantages of set language and symbolism had 
already become widely known and accepted. It was hoped that the 
use of these mental models might also be an enlightening exper­
ience for the young learner as well. 

But trials failed to support this innovation. Indeed after a time 
" t "b 1 ' ' se s ecame a most a synonym for "what's wrong with the new 
math?" In retrospect it can be seen that set representations were tools 
that were too delicate for the tasks assigned to them· there were too . . ' 
many rucetles to be observed in their use; so that confusion was often 
increased rather than decreased. 

As an example of the care that must be taken, note that one needs to 
differentiate between a list and a set. Thus the list a,a,a, is. different 
from the list a,a, and from the single listing, a. But, going back to 
the set S above, the notation used is defined as a roster notation: that 
appearing between the braces is a listing of names. But names used in 
this manner must be distinguishable; a repetition of the same name 
would introduce ambiguity. Hence {a,a,a}, {a,a}, and {a} must then 
all be accepted a~ representing the same set. 

'lb return to number as represented by an array of counters we can 
anticipate trouble with the number zero. For centuries people' must 
have thought: If there are no objects to be counted, what is the need of 
a number for this situation? Menninger (1969) found no trace of a 
written symbol for zero earlier than a Brahmi inscription of AD 870, 
although he states that the Sanskrit language had a name for this 
idea in sunya (empty) in the sixth century, and that the astronomer 
Ptolemy (about AD 150) used an abbreviation of a Greek word to 
indicate a missing place when writing fractions of Babylonian origin. 
Dantzig (1941) conjectured that zero was first conceived by an ancient 
scribe who wished to record an empty column on his counting board. 
Menninger puts it this way: "The zero is something that must be there 
to say that nothing is there." 

.If, as suggested, most persons associate numbers very strongly 
With the counting of objects, it is understandable why zero is often 
known only as nothing (no-thing). The set representation of numbers 
~n~roduces the empty set as a model for the number zero. But again, it 
1s~ust too.easy for th.e begin.~er to confuse the ~mptiness (n&;t'~.~gs) of 
th1s set w1th the set 1tself; smce the empty set 1s only a convenient 
mental fiction, but nevertheless must be considered to be something 
(some-thing). 
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Counting of changes 
The number zero has a much improved status when changes rather 
than objects are counted. Events can be considered as changes of state. 
Zero is then the number assigned to the original or initial state; before 
any of the changes to be counted have taken place. For such count­
ing, zero is no longer tied to an absence of things, but rather to a lack 
of change. 

In Figure 1 (adapted from Lay 1977) contrast is shown between 
the counting of objects (above the line), and the counting of changes 
(below the line). With the latter, five is now represented by a counting 
sequence. The arcs between the numerals for this counting sequence are 
meant to suggest changes of any kind that take place. A number is not 
assigned to the change while it is happening; the count is recorded only 
after the change is complete. 

Counting objects 

Counting changes 
of state 

0 1 2 3 4 5 

* * * * * 

Figure 1. 

There is a wealth of familiar activities and experiences which 
provide reason for counting changes of state. A simple example would 
be the counting of changes of position, as by steps. Zero then desig­
nates the starting position, the number 1 is recorded after the first 
step, 2 after the second, and so on. These further observations can be 
made for the comparison between the counting of objects (above the 
line) and the counting of changes (below the line). 

zero 

one 

+ 1, unit increase 

-1, unit decrease 

none, no object 

initial state, origin 

object 

change, transformation 

join one object 

advance to the next state 

remove one object 

return to the previous state 
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The concept of a counting sequence was used by Dedekind (1888) 
and Peano (1889) in their developments of a logical foundation for the 
principles of arithmetic. Such sequences are based on very funda­
mental intuitions. The questions to be answered are: "What comes 
first?" and then repeatedly, "What comes next?" A child is beginning 
to grasp these ideas when he or she can repeat, "Mary had a litt le 
lamb." Figure 2 suggests some of the significant reorientation that 
must take place when the imagery for numbers is to be shifted from 
counting to measuring. 

Figure 2. From counting to measuring 

* * * * * 
1 2 3 4 5 

Counters 
Counting 
How Many? 
Multitude 
Separate 
Discrete 
Natural Numbet s 

I I 
0 1 2 3 4 5 
Scale 
Measuring 
How Much? 
Magnitude 
Connected 
Continuous 
Non-negative Real Numbers 

A small proportion of the persons who have participated in the 
thought experiment for numbers, as previously discussed, have 
sketched a scale for the number 5, similar to that in Figure 2. But 
most have not thought of doing this, even when encouraged to do so 
by leading questions. 

One disturbing fact has come out ofverbal discussions of such 
simple scales. There are persons who believe that Figure 3 is really 
a model for number six, rather than for five! 

Figure 3. 

Apparently they are so committed to the counting of objects that they 
r~act by counting the scale division points, rather than counting the 
hne segments, or in thinking of the measure of the length of the entire 
segment. School authoritie~ecognize the widespread avoidance by 
pupils of all the physical sciences, because of the reputed difficulty of 
these subjects. Much of the data for these sciences comes from mea­
surements of quantities which the mind conceives as being cont in­
uous; such as mass, time, and measurements in space. What is the 
barrier to success for beginning students in these sciences? Can 

263 Lay I I mages & Symbols 



I 
I 

it be partially attributed to the pupils' lack of appropriate mental 
images for the symbols they encounter? 

Models for rational numbers 
The first extension of the number system, beyond that for the count­
ing numbers, has traditionally been to the non-negative rationals, 
commonly known as fractions. Let us repeat the symbol response test, 
this time for the fraction, two-thirds. 

What type of sketch or diagram first comes to your mind as being 
useful to communicate the meaning of%? 

It can be anticipated that nearly all people will first draw a unit of 
some kind; it's "oneness" being suggested by its appearance of being 
"all there." Examples might be a circle, or a pie, or possibly a square 
figure. This is then divided in three parts of equal size, and the atten­
tion is directed to two of these subdivisions, by some device such as 
shading. For a verbal description we may say that two-thirds has thus 
been shown as representing two of the three equal parts of one (one 
unit, or all of something). But the fraction o/a also represents one of the 
three equal parts oftwo, although a figure to illustrate this interpre­
tation is very rarely given by subjects for our experiment. If the two is 
imagined as referring to two separate objects, this figure has a forbid­
ding aspect if one is contemplating dividing it into three equal parts. 
This should be compared with the ease of thinking about a length (with 
a measure of two units), and sub-dividing this into 3 parts of the 
same length. 

0 2 

00 3 Figure 4. 0 2 

The key strategy here is to take advantage of the arbitrary length 
that can be assigned to the measure of one unit. We begin with a line 
segment with designated points that are equally spaced. The zero and 
1 of the scale are then located so that this assumed unit length can 
readily be subdivided into the prerequisite number of parts. With this 
done, then any positive integral multiple of this chosen unit length 
can be easily divided into the same number of integral parts. Thus in 
Figure 4 the number 1 was located to show the unit length divided in 
three parts; this assured that the length with measure 2 could also be 
so divided. There is a striking difference in the conceptual difficulty of 
thinking about dividing a two foot length of string into three equal 
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lengths, as compared to thinking about dividing two apples into three 
equal portions. If this example with o/a does not seem sufficiently im­
pressive, one need only try contrasting the discrete and continuous 
models using slightly larger numbers, such as o/1. An important peda­
gogical advantage can be noted for the models using scales. A variety 
of illustrative examples are easily constructed by pupils, who are the 
ones who need the practice. But for the models for which the units are 
separated, both text and teachers are limited to the simplest of cases. 

When the symbol 1/y is interpreted as x of the y equal parts of one, 
this concept is commonly termed the parts-of-a-whole meaning. When 
1/y is thought of as the measure of one of they equal parts of x units, 
we are appealing to the quotient meaning for 1/y. Of these two inter­
pretations, the quotient meaning appears much more frequently in 
applications but seems to be far less familiar to most adults. My hypoth­
esis is that this handicap is strongly associated with the lack of the 
mental imagery that visualizes numbers as measures, such as their 
use on a linear scale. 

The symbol 'i/y has still another interpretation, and its application 
extends to an even broader field than the two meanings already men­
tioned: The symb.ol 'i/y is also used to represent the ratio ,comparison of 
x toy. In part A of the Figure 5 we have a model for thinking about 
how 2 compares to 3. If a difference comparison is used (by subtraction), 
we say that 2 is 1less than 3 . But with a ratio comparison (by division), 
we say that 2 is o/a of 3. 

This same ratio comparison of2 to 3, or of%, is also shown by dia­
grams Band C. Of the three, diagram Cis considerably more flexible 
in its application. This flexibility arises from this distinctive property 
of ratio comparison: The ratio comparison of two magnitudes is inde­
pendent of the scale used to measure them. Not only is C of Figure 5 
a representation for the ratio meaning of o/a; it serves equally well for 
2•00o/a,ooo and for ·02/oa, as well as V1 112 and Lo/2.4. An older notation for the 
ratio of 2 to 3 was 2:3, but there is increasing use of the same form 
as for fractions and quotients. 

Scales for the measurement of length need not be confined to 
straight line segments. They are also used with curved figures, in 
particular with arcs of circles. Many phenomena in life are cyclic in 
nature; the same succession of events is repeated over and over again. 

<0 

A. B. c. ~Figure 5. 

* * 

* * * 
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A B c Figure 6. 

Revolutions Degrees Radians 

This is strongly suggestive of traveling around and around in a cir­
cular path. 

For a rapidly turning wheel or axle, it is convenient to assign the 
number one to a single complete turn or revolution. Let one revolution 
be divided into 360 equal parts, or degrees, as the ancient civilizations 
have taught us. Then many fractional parts of a turn are now mea­
sured with whole numbers: 1/2 turn is 180 degrees, V3 turn is 120 
degrees, V4 turn is 90 degrees, etc. 

Another way to assign measure to circular arcs is shown in C of 
Figure 6. In a certain sense we permit the circle to decide its own mea­
su~e. Th~ size of a ~ircle is f~lly determined by the choice of the length 
of Its radms. Imagme a flexible tape on which the distance from zero 
to one is the same as the length of the radius of the circle that is the 
di~tance from the center of the circle to the circle itself. Begin at 'some 
pomt zero and wr~p the tape around the circle. Then as in C of Fig­
ure 6 we have a picture of 5 as given in radian measure. This mental 
~mage of numbers is invaluable for many applications of mathematics 
m the field of calculus. This positive number 5 is measured in a counter­
clockwise direction; negative numbers are measured clockwise. 

The association of numbers with ratios is very ancient, going back 
at least as far as the Greeks. Sir Isaac Newton (1769) considered the 
idea of ratio to be so basic that he used it in the definition of number 
"By number we understand, not so much a multitude of unities as the 
abstracted ratio of any quantity to another of the same kind which 
we take for unity." ' 

This w_ay of thinking about numbers was given a concrete model by 
the Belgian educator, G. Cuisenaire, who introduced the colored rods 
which now bear his name. In Figure 7 if the white rod is assumed to 
have a measure of one, then 5 will be the measure of the yellow rod. 
The rods are unmarked, being identified only by color. This encour­
ages a wide generalization: If any rod is assigned any positive number, 
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white 

red 

green 

purple 

yellow Figure 7. 

then the ratio relations fix the unique number to assign to each of the 
other rods. For example, the purple rod is always twice as long as the 
red. If a number is assigned to either of these rods, then a number is 
fixed to assign to the other. Because of the three interpretations that 
can be given to :YY, these rods can be used to exemplify many properties 
of fractions and quotients, as well as ratios. Space does not allow dis­
cussion of their limitations, although the lack of a zero rod is evident. 

Some non-linear models 
The Cuisenaire i.'ods vary in only one dimension of space, that of 
length. For two dimensions, with width or height as well as length, 
the square of unit sides and unit area is the fundamental unit. This is 
a difficult step for the learner in mathematics. Just a glance at Fig­
ure 8 is enough to reveal serious shocks to our intuitions. Certainly it 
is hardly evident that a square of area 4 is exactly twice the size of a 
square of area 2. Nor is it apparent that an area of2 square units com­
bined with an area of 3 square units should be equivalent to an area 
of 5 square units. A considerable amount and variety of "hands on" 
experience is a prerequisite before such relations can be made reason­
able to our minds. Again, the difficulties with the ratios of areas are 
intensified when the ratios of volumes are considered. Here our intui­
tions are so strained that some might want to question the accuracy 
of the drawings for Figure 9. 

D oDD D 
1 2 3 4 5 

Figure 8. 
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1 2 3 4 5 
Figure9. 

Numbers as points 
The symbols we call fractions- either the common variety such as 
% or those called decimal fractions such as . 75-are the numerals for 
the positive rational numbers. These numbers present conceptual dif­
ficulties far greater than those that arise when only counting numbers 
are considered. One of these mind stretchers is the loss of "nextness," 
which was an essential feature of the counting sequence in Figure 1. 

What is the next larger fraction after %? The answer is this: Such a 
number does not exist; it cannot even be imagined. True, % is slightly 
larger, but 17/24 is larger than% or uv24, yet 17/24 is also smaller than%, 
or lo/24. In fact, if x andy are two unequal rational numbers there is an 
infinite list of numbers that lie between them. For such a reason the 
system of rational numbers is said to be dense. 

How can the mind be expected to visualize a dense set of num-
bers? The best answer we have is to adopt still another way of thinking 
about numbers, as suggested in Figure 10. On a line, extended in ei­
ther direction as necessary, two distinct points are chosen. The number 
zero is assigned to one of these points, and the number one is assigned 
to the other. The line segment whose endpoints are zero and one then 
becomes the unit oflength. The methods of geometry allow us to locate 
other points by adding, subtracting, multiplying, and dividing dupli­
cates of this unit segment. Points determined in this way are rational 
points on the number line; each is associated with a unique rational 
number. The number five is now a point on this line. 

Such a mental construct provides a model for a dense set of numbers, 
such as all the rational numbers between 1 and 4; we think of them as 
points on the line segment whose endpoints are 1 and 4. The points of 
a line do form a dense set. Between any two distinct points on a line 
there is another point, and even an infinite number of points. We have 
said that with each rational number there can be associated a unique 

0 2 3 4 5 

Figure 10. 
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point. But this does not mean that to every point can be assigned a 
rational number. Since Greek times it has been known that there is a 
number between 1 and 2, called a square root of 2 and written as Vz, 
which is needed for measurement but that cannot be a rational num­
ber. Such numbers, and the points matched to them, are said to be 
irrational. Rational points are dense everywhere along the line, yet 
modern research has concluded that the set of points missed by the 
rationals- the irrationals- is also dense and in some sense there are 
even more of them than there are of the rationals. Thus we see how 
our search for a mental image for numbers has led to some very deep 
and imponderable properties. When we grant that for each counting 
number there is always a larger number, we are led to infinity in the 
large. When we reflect on the number line, we are confronted with 
infinity in the small. 

For the counting sequence in Figure 1 every number has a unique 
successor. And every number, except zero, has a unique predecessor. If 
we allow every number to have a unique predecessor, the result is the 
sequence of integers. The notation for the integers is symmetrical, 
with zero as the center of symmetry. With each counting number dif­
ferent from zero there is paired its opposite; that is named by the same 
numeral, but by lflso including a minus sign as a tag to distinguish it 
from its partner. 

The counting numbers provide answers for "How many?," and the 
rational numbers do this for "How much?" The extension to the nega­
tive numbers is useful for "Where?" 

In Figure 11 the sequence of integers is used to extend the number­
ing of points for Figure 10; thus completing a figure that is called the 
real number line. 

- 5 - 4 -5 - 6 -1 0 2 3 4 5 

Figure 11. 

Vectors for Numbers and Operators 
There is still another visual image that we can use with great ad­
vantage for our example, the number 5. For each point on the real 
number line, except zero, we~an associate a directed line segment, or 
vector. This vector will have its initial point at zero and its terminal 
point at the number by which it is named. The arrowhead at the ter­
minal point gives the vector a sense of direction which is lacking for 
an undirected line segment. If the point zero is accepted as a limiting 
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or degenerate vector, the vector model for each real number is then 
complete. 

0 2 J 4 5 

Figure 12. The vector should lie along the line, but is offset here for clarity. 

Before presenting our final representation of number, we mention.a 
caution to be learned from Skemp (1971) in his instructive discusswn 
of mathematical symbolism and imagery. A visual symbol can convey 
a distinctive and even a dramatic message, but it can also be imprecise 
in this communication. 'l\vo persons looking at a mathematical sym­
bolism or a visual model of it do not necessarily "see" the same thing. 
A simple and yet very fundamental example can be given. 

There are several ways to think about even such a simple form as 
3 + 2. We have first been taught to think of this in terms of a binary 
operation (an operation on two numbers); which can be emphasized by 
underlining, .3. + .2. Three is a first number and two is a second. The 
plus sign links these to form the composite symbol, 3 + 2. The arith­
metic student may be encouraged to think of the plus sign as suggest­
ing an operation (addition) yet to be done, to get the number 5 which 
will be ca lled the sum of 3 and 2. Yet the algebra student must accept 
this addition as already accomplished by the writing of 3 + 2. This is 
a result of accepting 3 + 2 = 5 as a true statement because 3 + 2 and 
5 are names for the same number. The change from 3 + 2 to 5 must 
be recognized as a change of form but not a change in amount. It is 
unfortunate that elementary texts commonly gloss over t his conflict 
of meanings. 

But the end is not yet for 3 + 2. This time we underline to suggest a 
unary operation meaning, .3. + 2. Three is still a first number, but the 
composite symbol + 2 now represents not a number, but rather a 
change. We think of+ 2 as an operator, representin~ a_n .increase o~ 2. 
The number 3 is the operand. When the operator + 2 ISJOmed, by wnt­
ing it at the right, the result is the transform, 3 + 2, which represents 
a second number. 

Unary operations have possibilities for int roducing a dynamic 
point of view into arithmetic which is yet to be recognized ~Y texts 
and teachers. Curiously enough, some of the present practices already 
seem to follow the unary operation concept. For example, in present­
ing 3 + 2 = 5, a textbook picture may show a static model for the 
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number 3, such as three children standing in a group. But many such 
illustrations include a dynamic model, not for 2 but for + 2, as shown 
by two children at a distance but running to join the others. This leaves 
the number 3 + 2, or 5, to be imagined as the state after the two 
groups have become one. 

Even the vertical display for suggested addition computations has a 
slight bias toward a unary operation. 

3 
+ 2 , suggests a 3 D, a unary operation 

3 
+ 2, would be a better binary sumbolism 

If we return now to Figure 12, a fortunate circumstance can be ob­
served. The vector model for the positive number, 5, can serve equally 
well as a mental image for + 5, that is, for an increase of 5. For a de­
crease of 5, as indicated by the operator - 5, the vector would have 
the same length as for + 5, but with the arrowhead moved to the other 
end. In summary, the length of the vector can give the amount of the 
change, while the two senses of direction along the line can differenti­
ate between thE! two opposite kinds of change. 

However, the single vector shown in Figure 12 is too limited in its 
portrayal of an increase of 5. The vector shown there is also the position 
vector for the number 5. As such, it is a bound vector, with its initial 
point necessarily at the origin. 

But we want to think of increases as beginning at any chosen num­
ber (or point on the line). For this we need a free vector , that is, a vector 
free to move along a line but without changing its length or sense. We 
therefore enlarge our vector concept to include an equivalence class of 
vectors. ('I\vo vectors are equivalent if they agree in length, direction, 
and sense.) As long as t hese conditions are met the vect or remains 
equivalent even though it is translated to a new position. 

The vectors for Figure 13 all represent increases of 5, even though 
they have been shifted to t he left or to the right. Again we are to think 
of their acting along the line, even though they are here moved down 
for clarity. 

-2 -1 0 1 2 <0 J 4 5 6 7 

Figure 13. 
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As given here, our final interpretation for the real numbers will be 
to identify each with an equivalence class of vectors. For our example, 
the number 5, these will be the vectors oflength 5 that are directed in 
a positive sense (as from zero to one). Space does not allow a demon­
stration of how this correspondence between numbers and vectors 
provides a foundation for the study of signed numbers. 

Also omitted is the necessarily extensive discussion ofthe various 
binary and unary operations on numbers. We would find that there 
are distinctive advantages and disadvantages for each of these varied 
visual models as we consider such operations as addition, subtraction, 
multiplication, and division. Our purpose has been limited to sugges­
tion of the rich field of investigation that exists in the visual imagery 
that can be associated with numbers. 

Our society presents an ever increasing demand that mathematical 
competence be extended to a larger portion of its members. To make 
this possible we need to seek a better understanding (a better mental 
picture?) of number and its uses, and this properly begins with a study 
of its simplest ideas. 
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Representation of number 

Basic Numeral : 5 

Array of Counters: • • • • • 
1 2 3 4 5 

I cardinal Number of a Set: 

s = (a . b c . d • e} # (S} 5 

Sequence; in consecutive order: 

0 1 2 3 4 5 

Scale; for Length Measure: 

0 1 2 3 4 5 

Scale; for Arc J-l.easure: 

0 
2 1 

0,1,·· · 00,360,· 3co 
4 5 

Revolutions Degrees Radians 

Ratio of Lengths 

1 

2 

3 

4 

5 
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Ratio of Areas 

D D oDD 
1 

Ratio of Volumes 

1 

A point on a line: 

0 

A Bound vector 

0 

2 

2 

1 

1 

An Equivalence Class of Vectors: 

0 1 

3 4 

3 4 

5 

5 

An equival ence class of vectors can also correspond to 

an increase of n, as represented by the operator + n . 
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5 

5 

Language Acquisition 
through Mathematical Symbolism 

Francis Lowenthal 

We noticed that the use of a non-verbal formalism can favour cognitive 
development (in the frame of the elementary school) in problem children as 
well as in normal children. An example is given to show how a formalism 
inspired by mathematics can be used to aid the development of the verbal 
language of 8- to 9-year-olds. We will then analyze the results and try to 
discover the cause of success we observed. 

First we must specify which symbolic systems and which mathe­
matical formalisms to use. In a previous paper (1980a) we stated, 
"We think that the main factor of cognitive development is manipula­
tion of representations." In another paper (1980b) we claimed that any 
representation s~stem which satisfies the six following criteria can be 
used: the system must be non-ambiguous, simple and easy to handle, non­
verbal (to avoid conflicts with the developing verbal language); it must 
also be supple enough to enable the child to become conscious of what 
he knows but cannot verbally express; it seems essential that such a 
system should be suggestive of a logic and could be introduced and used 
in the frame of games (to enable us to use it easily with young children). 

We wanted each of our systems to be suggestive of a logic; this is 
why we decided to choose representation systems used in mathematics. 
This requirement enabled us to represent our symbolic system in 
terms of a game. The rules of a game are explained and the children 
must collectively build a representation. This is the first stage of their 
work: the synthesis. They must then modify the representation and 
only respect technical constraints while doing so. They then reach the 
last stage: the analysis of the new representation and the collective 
discovery of the rules of the new game. Similar exercises can be 
invented for language acquisition. 

What follows is a report of an actual lesson during whic we 
asked the children "to tell a coherent story corresponding to a~given 
representation." We will thus describe the adventures of a class of 
normal 8- to 9-year olds. The representation system we chose is that 
which is used in the new math (Papy 1968). Objects are represented by 
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