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For those who understand and enjoy mathematics its sym-
bolism is a gateway to an elegant, satisfying, and powerful mental 
apparatus. But for those to whom mathematics is a source of dif­
ficulty and confusion, these same symbols are more often perceived 
as barriers to understanding. Those who understand mathe­
matics- who can attach correct mathematical meanings to its 
symbols - pay little attention to the symbols themselves as they 
pass beyond them to the associated mathematical ideas. But those 
who do not understand mathematics do not get beyond its symbols, 
which rightly or wrongly they regard as one of their main sources 
of difficulty. 

My personal view is that though the power of mathematics 
resides in its ideas, access to this power is largely dependent on 
its notation, and that the better the notation the more effectively 
we can handle the ideas. (Compare the difficulty of multiplying 
CLXIV by XVIII with the relative ease of multiplying 164 by 18) . 
Even for competent mathematicians, therefore, there is much to 
recommend the study of notation in its own right; and particularly, 
what are the properties of, and criteria for, a good notation. And 
for those concerned with mathematical education, a study of the 
particular problems of learners with respect to its symbolism 
would seem to be indispensable if help is to be given in an area 
where it is particularly needed. 

The present collection of papers is offered as a contribution 
in this area, together with the hope that others too may begin to 
perceive mathematical symbolism as a subject likely to reward 
greater study than it has yet received. R .R .S. 
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Difficulties with Mathematical Symbolism: 
Synonymy and Homonymy 

Josette Add a 

We know that the confusion between meaning and sign (in French: signifie/ 
signifiant) is the root of a great number of mistakes in mathematics. 
Particularly, instead of making easier the approach to the mathematical 
concept represented, the sight of the design often produces a disturbance to 
understanding; it leads to mistaking the drawing for the presented idea, as 
idolatrous people do. I will demonstrate-by J:resenting many genuine ex­
amples which I have met in mathematical classrooms at every level-the 
mathematical roles of synonymy and homonymy. 

Mathematical objects are, by nature, abstract objects. Only through 
their denotations is it possible to encounter them. So, the problem of 
the linguistic relation of meaning (i.e., the relation between signified 
and signifier) ts particularly crucial for mathematical understanding. 
Teaching and learning situations bring to light difficulties inherent 
to mathematics. Failures by students are signs of epistemological 
obstacles. So we are going to study our problem through paradig­
matic cases, observed during mathematics classes. 

Thinking of the role of symbols, we would be happy to have a one­
to-one correspondence: SYMBOL~ MATHEMATICAL OBJECT. We would like: 
(1) that each symbol should denote one mathematical object and only 
one, and this not only for the teacher (or writer of a textbook or an ex­
amination) but also for each of the students - and the same one for 
everybody! (2) that each mathematical object be represented by one 
single symbol. Alas! It does not work like this (see, for instance, Skemp 
1971, Freudenthal1973, and Adda 1975-1976); so we will see that we 
cannot escape the linguistic problems of synonymy and homonymy. 

I SYNONYMY 

Synonymy of symbols is decisively related to the problem of identity. 
One never needs to say that one object is itself, but one often says that 
two objects are only one (for instance: "the two numbers a and b are 
equal so that they are the same number"). This is a frequent use, but 
it is a misuse because what we intend to mean is that the two names 
are names of the same single object, that they are synonymous. 
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The symbol"=" is of constant use in mathematics and its function 
is to mean that the symbols written on its left and its right denote the 
same object. Thus 2 = 2,00 = 4/ 2 and this means that "2" and "2,00" 
and "4/2" are symbols referring to the same object, the same number. 
[Editor's note: As readers will know, the decimal point is rendered in 
French usage by a comma.] But many studies (e.g., Kangomba 1980) 
show that pupils, and even some teachers, often say that 2 is a natural 
number but neither a decimal nor a rational number, while 2,00 is 
decimal but neither natural nor rational and 4/2 is rational but 
neither decimal nor natural!1 If we refuse, as some people do, the com­
plete identification by embedding the set of natural numbers into a 
part of the set of rational numbers we have to renounce definitely to 
write "4/2 = 2" which is very useful! 

Being unaware of the synonymy, pupils can write without 
qualms: "2 + 3 = 5 + 7 = 12 x 2 = 24". This comes from a gen­
eral use in school of questioning statements such as "2 + 3 = . .. ", in 
which the symbol"=" does not have the same meaning as "equals" 
but rather that of"gives as result," and so the above statement 
can be understood as a sequence of manipulations on a calculator. 
Writing in the same way as when operating with a calculator is a 
sensible behavior but, unfortunately, it does not lead to correct 
mathematical statements. 

Brookes (1980) notices that whatever they have been taught about 
this, when asked: "Look at '7 + 8 = 14'; correct the mistake, please" 
almost everybody has the same initial reaction and puts "15" at the 
place of "14"; far less spontaneous are other corrections such as put­
ting "7 + 7" in place of "7 + 8", or even "8 + 8 = 16" .... This shows 
that the asymmetric meaning of"=" is pregnant for all of us. Further­
more, while the mathematician has emphasized that 2 and 2,0 are the 
same object in some later physics lesson the pupil will be told of a 
crucial distinction between 2 and 2,0 (about accuracy). 

Many teachers and textbooks authors are disturbing. F. Cerquetti 
(1981) quotes a strange mathematics textbook in which, in an exercise, 
"2,10" is described as "incorrect writing": 

8. Supprime les zeros inutiles: 
ecriture correcte 

2,1 

ecriture incorrecte 
2,10 

04,05 
30,100 
108,20 

0,00050 
1,2800 
104,0 

Though, three pages down, fortunately, one can see the expression 
"2,50f' in another exercise! 

II HOMONYMY 

When two different objects have the same (or nearly the same) 
designation, problems of understanding are bound to arise, and we 
know of cases in which designations differ in spelling only and in 
which children, listening to a text which does not make sense for 
them, mispell it. It seems that children who have the greatest diffi­
culties with the linguist ic problem of spelling are also those who are 
unaware of its function; it would be fruitful to enable them to become 
aware of the importance of the convention. 

As an example, an eleven-year-old French boy noted for his very 
poor language performances (especially in spelling) was, on the con­
trary, very bright when working with LOGO (Papert's computer display 
turtle). He decided to draw on the screen a camera, the program of 
which he called FOTO. But the drawing appearing on the screen was 
not satisfying, so he prepared a new program and called it FAUTAU, 

and after this a new one called FAUTEAU, and another, the good one, 
called FAUTTEAU. Most surprising is that this boy never did confuse the 
names when ~e was typing on the fingerboard. The spelling conven­
tions decided by himself were very coercive for him. In mathematical 
language we often use the same (or quite similar) notations for 
different concepts and this creates difficulties unless the difference is 
suitably emphasized. 

1 Confusion between similar notations 
I shall precise this type of confusion by presenting examples about 
the symbolism of a sequence of figures followed by a comma and of 
a sequence of figures. 

Emmanuelle (an autistic girl, ten years old, studying in a special 
class for mentally handicapped children) looks at the three exercises 
written on the blackboard by the teacher. In each of them two or three 
decimal numbers occur, some of them being written with commas (re­
member that this is the French use). In her exercise-book, she writes 
operations where not only the numbers appear to be combined as at 
random, but also the decimal notation is often decomposed and treated 
as a symbol denoting a couple ofnumbers.2 
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Well, will you say, this is a very extreme case! But what about the 
comparison between 5,2 and 5,18? Many experiments (e.g., inquiries 
by the IREMS of Rouen and Strasbourg) show that even fifteen-year­
old pupils claim that 5,2 < 5,18. Is not it provoked by the same con­
fusion as Emmanuelle's? "5,2" is not seen here as another name for the 
number also written "5,20". Instead there is on one side the "5" and on 
the other the "2" which means less than "18"! In the opposite direction, 
we can find situations in which a couple of natural numbers is con­
fused with a decimal one. For instance, I saw a 13-year-old pupil faced 
with the definition of integers as classes of couples of natural numbers* 
so that he had to perform additions of couples of naturals as an in­
troduction to additions of integers. I observed on his paper the follow­
ing mistake: 

(4,7) 
+ (3,5) 

= (8,2) 

instead of 

(4,7) 
+ (3,5) 

= (7,12) 

This can be compared with the following line that G. Glaeser saw in 
an examination of complex numbers (at first year of university): 

1 + i = (1,0) + (0,1) = 1,1 = 1 22 
1 - i (1,0) - (0,1) 0,9 ' 

So even with the plain problem of figures with comma-with or 
without parentheses (a very small difference?)-we can see those 
confusions at many various levels of studies. 

Another type of example of confusion between similar notations 
involves the case of notation by nothing, i.e., juxtaposition. Many 
pupils are troubled by its use for products, and so, being ignorant of 
the rules for algebraic writing, they are led to the following 
"simplification" well known by all teachers: 

~=31a 
2 Confusion between different linguistic levels 
In section 1 the co:qfusion was only by pupils on their own: they 
identified expressions which were not exactly identical. But now we 
will consider confusions in which teachers share the responsibility 
because of language misuses. 

*For those unfamiliar with this definition ofintegerns, we recommend that 
this example be omitted. Eds. 
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Logicians emphasize the need to use the symbolism of quotation 
marks to distinguish the symbol, taken as object, from its referent. 
Actually, in writing, quotation marks are often omitted and for oral 
di~course it is quite difficult to make them perceptible. One often 
~msuses referer:t when one intends to speak about the symbol: For 
mstance, consider the sentence, "An even number ends with 0 2 4 6 

8 "H . h '' '' or · ere IS t e same confusion of linguistic levels as in the 
sentence: ·:Paris has five letters." Indeed, nobody is disturbed by 
the confusiOn between Paris which is a city and "Paris" which is the 
name of a city (here is a mine for jokes and puns from the most 
ordinary kind to Lacan's), nor by the confusion between the even 
number which is divisible by two and its symbol in decimal notation. 
But ~hen we listen to a teacher in primary school, we are very 
surpnsed by the abuses made during the study of numeration in 
which both numbers and their denotations are considered. We often 
hear (and even read in textbooks) the following sentence: "'lb 
multiply a number by ten, add a zero." In this strange formulation 
multiplication is an operation on numbers while addition is intended 
as an operation on sequences of figures (i.e., a metamathematical 
operation) and nobody tells the pupils that! So do not be surprised 
to hear some poor child saying: "2 + 1 are 21." 

Confusions are frequent in the study of fractions. For instance, 1/ 2 
and 2/ 4 are equal, but "1/ 2" has a prime denominator while "2/ 4" has 
not. If you say or write the previous sentence without quotation marks 
(as it is generally done), that will be quite disturbing for the meaning 
of equality. 

In these examples, we have seen two levels confused in the same 
discourse. Even when there is only a single level, we can find mis­
understan?ing in communication between teacher and pupil if one 
of them thinks at one linguistic level and the other one at another. 
The date with "1979" being written on the blackboard, I observed a 
teacher asking a nine-year-old (in a special class for the mentally 
handicapped) to write a larger number, the pupil wrote in the middle 
of the blackboard a very large: '3 F" 2-. 
In some sense he was right, but I had to convince the teacher! 

Jaulin-Mannoni (1975).jisked a child in front of this drawing 

~ t:I :0: :0: 
a b c d 
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to draw "three times a" and he drew 

and not three drawings of a tree as she expected. That certainly does 
not show a difficulty about multiplication but rather about the con­
fusion between symbol and reference. 

III THE PROBLEM OF VARIABLES 
The situation ofhomonymy-in which a symbol is considered as 
meaning, at the same time, both its referent and the symbol 
itself-often occurs, as in the last example, with the use ofletter s for 
symbols of variables. For non-mathematicians this use is particularly 
disturbing. Actually, we are dealing here with the main specificity of 
mathematical language and, for people who failed in mathematical 
learning, the language was often the barrier where they got stopped. 
Baruk (1977) asked Daniel what an equation is; he answered, "It is 
figures and letters." We can hear others saying, "Oh mathematics! 
Some a, some b, and x, and ... equals zero." This is the only mark left 
by ten years of mathematics in much of the population. 

This use ofletters is an important difficulty inherent to mathe­
matics. We cannot avoid it, but perhaps we can make it more explicit 
to pupils. We are simultaneously confronted with phenomema of homo­
nymy and synonymy: apparent homonymy between the symbo~ and 
the signified (but we will see later on that some perverse exerc1ses are 
based on it) and hidden synonymy between the letter and other desig­
nations of an object. 

For instance, in "2x + 3 = 0", "x" is synonymous of"- 3/2"; in 
(1) "ax2 + bx + c = 0", the symbol "x" is synonymous of the two in 
"-b±Vb2 - 4ac / 2a", "c" is synonymous of"-ax 2

- bx", and "ax
2 

+ 
bx + c" is synonymous of"0".3 But all the letters have not here the 
same function: for instance, in an equation some letters represent 
unknowns and others represent parameters, depending on the role in 
the problems. Example: (1) is a second degree equation in x, or a first 
degree equation in c. 

Furthermore, the meaning of a mathematical sentence depends on 
the structure which interprets the symbols, and each letter denotes 
any object of the reference set attributed to this letter. For instance, 
consider the expression: 

"3 x (x + 3 = 1)" 
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if"x" ranges over N (the set of natural numbers) the sentence is false 
and if"x" ranges over 7l. (the set of positive and negative whole num- ' 
hers) it is true, while 

Yx (x + 3 = 1) 
(1) 

is false over N and over 7l. and 

YxR (x + 3, 1) 
(2) 

is true over N if "R " means the ordinary relation of order (so that the 
struc.ture <N,?;> is said to be a "model" of the sentence [2]), and not 
true 1f "R" means the relation of equality, etc . ... . 

Davidov and Wilenkin (see Freudenthal1974) conducted experi­
ments in teaching the use of variables at the very beginning of 
mathematical studies, in elementary school. Pupils then seem to 
be more able to understand the meaning of operations; they are not 
distracted by computational difficulties when confronted with a 
word-problem with letters. It seems to be easier to teach them to 
substitute the writing of numbers to letters than to teach them as 
we generally•do, to generalize by letters the writing of number~. For 
instance, when we say, "Let n be a number," we often hear children 
protest: "n is not a number, it is a letter." A good process is (as Varga 
does) to tell them "choose a number" (and each pupil chooses his own) 
and "do so and so .... " Then we explain what was done by each one 
by saying "the number," and quickly it becomes more comfortable to 
abbreviate and more natural to say "n" for "the number." Note that 
this process only works when they can forget that "n" is a letter. 

So we have to stand up against the perverse exercises in which two 
linguistic levels are occurring: such as asking children this strange 
question: "What is the set of the x such that x is a vowel?" which 
mixes the letters considered as objects and the letters considered as 
symbols for variables. Do not be surprised if pupils are troubled and 
answer "W'! The convention to designate variables by letters was 
taken for mathematics about numbers not about letters Gust to avoid 
designation of a number by another number!) Still worse are traps 
such as this classical one: "Calculate (x - a )(x - b )(x - c) 
......... (x - z)," in whieh two levels are deliberately rp.ixed. This 
could be a pleasant joke4 but please be aware that answe'!-ing "0" is not 
compatible with the mathematical use of variables. You have to think 
to the factor (x - x) where, in a true mathematical situation, you 
would have to consider the difference between two numbers 
(independently of the alphabet of the country!). 
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Homonymy is also dangerously encountered in situations where 
we use the same letters for names of objects and for linked variables.5 

For instance, I observed a teacher referring to a linear map as "f " and 
following exercises with various special cases dealing with maps always 
called "f' as well, asking whether each f was linear or not. Pupils were 
completely disturbed, trying reasoning involving vicious circles (the 
property of the f being intended as given in the definition). 

Points as variable symbols 
The use of"etc .... " and of " .. . " can be connected with the use of 
variables. We encounter them with an infinity of references, and the 
authors hope that we shall discover the meaning through the context 
(see Adda 1979). Actually, questions such as "Complete 1,3,5,7, ... " 
(though of frequent use by psychologists) are not mathematical 
because, mathematically, here" ... " can mean anything. But pupils 
have to understand many expressions like: 

ao + alx + a2x2 + ... + anxn 

and the canonical interpretation of them can be difficult when pupils 
are not familiar with the context. 

We find another use of points in "fill-the-blanks" exercises. For 
instance: 

4. 

+ .5 

= 71 

I think this is worse than letters because here the same symbol is used 
in cases where one would have written different letters. 

BY WAY OF SYNTHESIS 

'Ib conclude, it might be interesting to examine the answer of a 
twelve-year-old boy to a teacher who had asked for an example of 
two disjoint sets: 
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Curiously, the teacher found it good! For me, this is a mathematical 
monster. Not only could the sets have a non-empty intersection and 
even be equal in many cases (for instance A = 1, B = 2, C = 3, 
D = 4, E = 5!), but let us not forget that necessarily A = A and, 
even more, B = B! Is it not that the reason this child did not see this 
as a special monster is because for him, as for many people in the 
non-mathematical world, mathematical symbolism is considered 
as a sorcerer's code for which ordinary people cannot hope to 
discover a key?6 

1. It seems to me that a large part of the responsibility lies in textbooks and in 
such teachers' expressions as: "A decimal number is a number written as 
... "and "A rational number is a number written as ... " instead of "a 
decimal [resp. a rational] number is a number which can be written as ... . " 

2. Sometimes figures were recombined in other numbers so that, one day, I 
observed: 

On the blackboard 
13,5- 9,5 

• 

On Emmanuelle's paper 
-135 

59 
1 

164 

3. Of course it is not simple. Here is the situation of synonymy generated by 
descriptions. It is very complex. In the beginning of our century logicians 
with Bertrand Russell thought very much about paradoxes such as: "Walter 
Scott is the author of Waverley" so that "Walter Scott" is synonymous of"the 
author of Waverley," and in nearly all situations you can write one for the 
other-but not in the descriptive sentence itself, obtaining "Walter Scott is 
Walter Scott" which is a very different sentence! 

4. One French textbook (by !REM ofStrasbourg) presents it as a "poisson 
d' Avril" but not all teachers are so honest! 

5. Also, though I did not observe cases of misunderstanding, we can note the 
use of the same letter for names of special objects and for variables with, for 
instance, "1r" (taken as for the special number and as for names of planes ... ) 
or "i" (with i = V=I or names of integers, .. . ) etc .... 

6. I am grateful to C. Berdonneau for many corrections of the poor English of 
my first version of this ~per. 

All the quoted examples are French. Those about commas are probably 
avoided by the notation of the decimal point. I am not able to know if there 
exists a similar perturbation for English and American pupils. 
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Emotional Responses to Symbolism 

Laurie G. Buxton 

Special difficulties often arise in reading mathematics because of the symbols 
and notation that are used. This is caused not only by the range of symbols and 
their density of meaning (interiority) but also by strong emotional responses 
raised by certain symbols or combinations. These feelings may reflect unplea­
sant memories of when the symbols were first encountered, but may even 
derive from an unease with the shape of some of them. 

Much learning hinges upon the decoding of symbols, for it is mainly 
by means of written symbols that the knowledge the human race has 
accumulated is stored. Most of us learn satisfactorily to read our own 
language, though any of us can be confronted with passages of prose or 
poetry which.we are able to translate from the written symbols to the 
spoken word, but cannot claim readily to comprehend. On the whole 
we remain comfortable when presented with a piece of our own written 
language whose symbols do not, with some reservations discussed be­
low, occasion us disquiet. However, how are they regarded by someone 
who has not been able to learn to read? The range of unpleasant feel­
ings is considerable. The mere sight of symbols oflanguage will occa­
sion fear, distaste, embarrassment, and shame. Anyone who has sought 
to teach an adult illiterate will confirm that this statement is not too 
strong. There is, in fact, a vicious circle whereby the emotional response 
to the symbols is such as to inhibit the individual's cognitive processes, 
which may in themselves be perfectly adequate to acquire the skill of 
reading. It is difficult to put oneself in the position of a non-reader (or 
even a pre-reader, though we have a ll passed through this stage). But 
once we introduce mathematical symbols, most of the population can 
be put precisely in this situation. 

I shall describe three experiments on reactions to symbols, and hope 
then to offer explanatiow of two of them. The first was conducted with . 
various groups of people most of whom knew some mathematics and 
had a generally positive attitude to the subject. The following state­
ment was shown on a screen by an overhead projector: 

cf>(x) is continuous for x = g if, given 8 , 3 

t: (8)s .t. lcf>(x) - cf>(g)l < 8 ifO .:;;; lx - gl .:;;; t: (8) 
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and the assembled company was asked to read it. "Reading" meant 
turning the written symbols into speech; it did not imply comprehen­
sion. No-one was able even to "bark the words," let alone penetrate the 
meaning, so they were in the position, relative to this passage, of a 
genuine non-reader. 

The group were asked individually to record their emotional response 
on seeing the statement. Some said "mystified" or "double-dutch," but 
there were a number of replies in the area of"fear," "anxiety," or "ap­
prehension." This type of reaction, in fact, prevents people even bei.ng 
willing to attempt understanding. We may assume that the symbohsm 
of mathematics, despite its many advantages, can induce feelings 
inimical to learning the subject. 

At this stage it is worth distinguishing between symbols and not~­
tion. By symbols I mean single characters, such as g, but by a notation 
I mean a grouping of such signs to convey a particular meanin~. When 
we write (3,4) the symbols used are common ones, but the particular 
grouping of signs has a great deal of extra meaning (or to use a Skemp 
term, "interiority") not detectable by anyone who merely knows the 
separate signs. The effect of this is to render the apparently common 
place rather mysterious. This is one of the features of the language of 
mathematics that makes it inaccessible to so many. 

Returning to our first example of mathematical writing, it may 
be that the use of Greek letters accounts for some of the negative reac­
tions. The second series of experiments with groups of people illus­
trates this, though there are other factors at work as well. When off~red 
the suggestion, "Plot the point (3,4)," most of the groups I was dealmg 
with were happy enough, in that they understood the notation and the 
instruction was clear to them. Not all were sure which way one should 
measure the 3 and which the 4, but that was the only area of unease. 

With the statement, "Consider the point (x,y )," there was a sense of 
uncertainty and insecurity in some, deriving partly from the formality 
of the language and partly from the familiar numerals being replaced 
by slightly mysterious letters. Yet the statement was still on the 
whole acceptable. 

Finally the group was presented with "Let P(g,') ) be such that .... " 
Quite apart from the unfinished nature of the statement and the in­
creased formality of style, the impact of P(g,'J) was such as to render 
extinct any hope that what followed might be understood. One person 
claimed that once such a statement was stated, "The shutters came 
down" as far as he was concerned. In part this derived from the nota­
tion of setting the letter P next to the known notation, and in part 
from the Greek letters, which not everyone could even say. 
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Enough has perhaps been said to establish t hat the written lan­
guage of mathematics has not only a density of meaning that renders 
understanding slow in coming but that the mere presentat ion induces 
an unease that will not allow one to make a start on penetrating the 
meaning. Those feelings laid down as a result of earlier failures in 
dealing with mathematical symbolism inhibit an appropriate cogni­
tive attempt even at reading them. 

There is another separate response that is of interest. In this third 
expe~iment, and working again with various groups of people, another 
emotiOnal response to symbols has manifested itself. The evidence 
given so far suggests that unfamiliarity with Greek letters may be an 
important influence in producing negative reactions. Without refuting 
this, experiments in attitudes to single letters indicate that some are 
more acceptable than others and that certain Greek letters (such as a 

and p ) are found to be pleasantly formed and quite appealing-and 
that this is not true of all the letters in our own alphabet. In present­
ing this issue to a group I discussed the fact that some relatively unfa­
miliar letters, such as a, did not seem to create unease. I then asked 
that the question of familiarity or frequency be cast from their minds 
and that each.,person should decide individually which lower-case let­
ter of the English alphabet they found most strange. With every group 
ofpe~ple, q emerges as the easy winner. Even with groups of as many 
as thirty people not more than six letters were mentioned, with x, z, k, 
andj appearing, but in every case with far fewer votes than q. It is 
not easy to guess what this may mean. Perhaps it is simply the shape. 
Certainly among the Greek letters ~ is not as easy to accept as p. Why 
should we respond in this way, and what effect does it have on our be­
ing able to deal with mathematics? At this stage I have not even 
reached a hopeful speculation. 

So we see that all purely cognitive approaches to the understanding 
ofmat~ematical symbols and notation will be ineffective unless they 
recogmse that an emotional dimension exists. Acceptance of a symbol 
or a notation is an emotional issue. It may come simply with usage and 
familiarity, but mere definition will never suffice. Even with signs to 
which we have become accustomed there may remain a flavour of 
distaste which makes us less competent in their use. 

So far the case is state~ If we now accept that there is a problem we 
have two things to do. The first is to give a rationale for why we should 
feel as these experiments indicate that we do, and the second is to sug­
gest possible ways of preventing "symbol-fear" from arising, or (more 
difficult) remedying it when it has occurred. 
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Skemp (1980) has indicated that emotions may signal danger and 
an attack upon oneself. May we interpret the situation of reading a 
string of symbols in the light of this belief? Is an attack being made? 
Certainly all ones early learning experience leads one to believe that 
demands are being made. When presented with symbols, including 
the language ones, the demands is that some response be made, such 
as reading it, understanding it, or working something out. The threat 
lies at the end of that process, because failure to satisfy the teacher's 
wishes can often have a negative emotional outcome! Even if in a pre­
sent situation no demands are being made, one's belief is that they are, 
based on previous experience. It may be that the symbols of mathe­
matics make more difficult and heavier demands than other symbols. 
They are perhaps more functional, operational, active than the letters 
in which our prose is written. This is illustrated by the successive lines 
in which an equation is solved. So routine can become the various 
transpositions which we make that the symbols seem to have a life of 
their own in arriving at an answer. Even so, an illiterate probably does 
get quite strong negative charges from the printed work, and as we 
have said, most people are illiterate when it comes to "reading" 
mathematics. 

The answer is not to avoid mathematical symbols in a child's earlier 
experience. Rather one should capitalise on situations where the chil­
dren feel a need for symbols. Several examples may illustrate this. 

A group of children in one primary school were playing with some 
chime bars and at the end of one day had found a tune which happened 
to please them all. They wanted to play it the next day. No sophisti­
cated derivation of musical notation arose, but the five chimes were 
labelled A, B , C, D, & E and they simply wrote down a string ofletters. 
The beginnings of a notation, and perhaps the first step towards alge­
bra? Certainly a code they all understood, and not discoverable from 
outside without further information. 

A second case, again with primary children, arose in recording 
journeys. In going from, say, school to public library at every junction 
they used one of three symbols L, R, or A. "A" stood for "ahead," "L" 
for "turn left," and "R" for "turn right." They worked happily with 
them and managed t o establish how a string of symbols was transformed 
on the reverse journey. (Interestingly, if we introduce "U" for "about 
turn," we have a group isomorphic to that formed by the powers of i). 

A last example comes from my own work with a group of experi­
enced primary teachers. We were engaged upon an investigation of the 
regions created when straight lines cut each other, all in distinct points. 
We had arrived at a four-line configuration and at first I had labelled 
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the spaces by a string of capital letters. This was readily accepted. Sud­
denly I wanted to convey the number of boundaries of a region, and 
whether it was open or closed, and without preparation labelled it as 
shown in Figure 1. The effect of one member was to say that she was 
totally lost. The need for a notation should have been raised and the 
group should have been asked for suggestions. 

Regular sessions, then, at all stages in mathematical education, of 
experiencing the need for a symbol or a notation and the discussion of 
the notation suggested, would greatly ease the situation. In most peo­
ple's experience each addition to our complicated system has simply 
been produced like a rabbit out of a hat. 

There is a related but distinct reaction to symbols that we may ex­
plain differently and perhaps remedy in other ways. A page of mathe­
matics can induce not so much a clear and remembered threat as a 
feeling of insecurity, sometimes at a level that can be described as 
panic. A model of this feeling developed by Skemp and myself is de­
scribed by myself (Buxton 1981). Briefly, a failure to comprehend the 
symbols places the reader in one area where is lost, with no sense of 
goals or direction, and with no sense of how to act appropriately. 
Panic ensues. 

In general a symbol represents a concept, whereas a notation in­
volves a whole schema lying behind it. We saw this in the plotting of a 
point described in various ways earlier. If the schema is not known to 

Figure 1. 

3o 
3o 

2o 3o 
4o 
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the student, even if the separate concepts are, he will be unable to oper­
ate. Approaches to mathematics teaching that are largely content based 
will attempt to develop it logically and to develop all parts of the s~b­
ject in an ordered fashion-and this is admir~ble .. However,, more Im­
portant than the schema lying within the subJect (m Poppers world 3) 
are those in the mind of the student (world 2) (Popper ~973). W~ need 
to check with the students whether they find ~hat the. mformat~on con­
veyed fits what they have in their minds. An mterestm.g ex~enmen~, 
is to ask a number of people whether "minus times a mi_rms IS ~plus 
fits comfortably into their minds. When the student believes, nghtly 
or wrongly, that the idea does fit, then and only then should you move 
on. It is the "emotional acceptability" of what we are told or read that 
is the measure of whether we can advance. 

Most teachers check out whether their students understand, and by 
this they are addressing the cognitive. It is nece.ssary to ask whether 
they accept-and that is affective. Once the strmgs of. symbols. are at­
tached comfortably to those patterns we already have m our mmds, 
we are secure. 

Finally we should mention one counter-indicati~n to what we have 
said, and point again to one question discussed ear her but not resolve~. 
In the discussion on (~,"J) we did assume that the schema of two coordi­
nate axes, and the plotting of points was known and comforta~le.' Why 
did the use of unfamiliar symbols induce discomfort? Perh~ps It IS felt 
that they must convey something more, something mystenous- else 
why were such letters used? But the reason is not clear. 

As for why q is so "strange"-perhaps someone can help? 
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Mathematical Language and Problem Solving 

Gerald A. Goldin 

Problem solving in mathematics may require different kinds oflanguage: the 
verbal or mathematical language in which the problem itself is posed, the 
notational language of problem representations available to the solver, and 
planning language for heuristic reasoning and formulation of strategies. This 
paper explores some relationships among these languages, with examples of 
ways they can influence problem-solving processes. 

I Introduction 
Problem solving in mathematics refers to situations in which some 
items of information are given or available, and one or more goals are 
described. The problem solver is expected to attain the goal(s) through 
logical or mathematical procedures. Sometimes the term "problem 
solving" is restricted to the case in which the solver has no routine al­
gorithm available for this purpose. Mathematics educators have become 
increasingly interested in studying problem solving and improving its 
teaching (Polya 1962 and 1965; Harvey & Romberg 1980; Krulik 1980; 
Lester 1980). 

Kilpatrick (1978) proposed to organize the independent variables 
of problem-solving research into three main categories-subject vari­
ables, task variables, and situation variables-for the purpose of 
understanding how problem-solving outcomes depend on variables in 
each category. A collaborative study of task variables was conducted 
by a number of researchers (Goldin & McClintock 1979). In this work 
the characteristics of problem tasks were considered under the follow­
ing headings: syntax variables, describing the grammar and syntax of 
the problem statement; content and context variables, describing the 
semantics of the problem statement; structure variables, describing 
mathematical aspects of a problem representation; and heuristic be­
havior variables, describjp.g heuristic processes associated with or 
intrinsic to specific problems. Task variables were taken to be indepen­
dent of the individual problem solver, and defined instead with respect 
to a population of solvers. They are subject in principle to control by 
the researcher or the teacher. 
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Let us now distinguish among various kinds of language which can 
be employed during problem solving: the verbal language of the prob­
lem, notational languages, and planning language. 

A VerbalLanguage 
The verbal language in which the problem itself is posed may be a 
natural language such as ordinary English, and may include technical 
terms from mathematical English. Task syntax variables are descrip­
tive ofthis language. Barnett (1979) reviewed a large number of studies 
on syntax variables, organizing them into the following categories: 
variables describing problem length; variables describing grammati­
cal complexity; formats (verbal or symbolic) of numbers or other mathe­
matical expressions; variables descriptive of the question sentence; 
and the sequence of information in the problem statement. Linear re­
gression studies have indicated that variables oflength and gramma­
tical complexity, defined in various ways, do affect the difficulty of 
verbal problems in arithmetic (Loftus 1970; Beardslee & Jerman 1973), 
but have provided little insight into how this occurs. 

The problem statement is often descriptive of a "real-life" situation 
which can be pictured or visualized. Content and context variables, 
reviewed by Webb (1979), describe the semantics of the problem state­
ment. The term "content" refers to mathematical meanings, and the 
term "context" to nonmathematical meanings, insofar as this distinc­
tion can be maintained. Sometimes a problem posed in words may be 
accompanied by a picture or diagram; then we regard this picture 
as part of the problem content or context. 

B Notational Languages 
Notational languages available for problem solving, unlike ordinary 
language, are highly structured formal systems. They may have strict 
semantical rules for writing well-formed expressions, and a well­
defined set of allowed transformations from one expression to another. 
Examples include the notations for our system of numeration, for 
arithmetic operations, for fractions, decimals and percents, for 
algebra, trigonometry and calculus, for set theory and symbolic logic, 
and diagrams picturing allowed constructions in Euclidean geometry. 
Evidently a great deal of the teaching of mathematics is devoted to 
communicating the rules for working within such languages. 
Once a problem has been translated into a notational language, purely 
formal manipulation of symbols according to the rules of procedure is 
usually sufficient to arrive at a solution. Nevertheless, the symbol-
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manipulation may continue to be motivated by visualization of the 
"real-life" situation that the notation now describes. 

The concept of a problem state-space has been employed to describe 
the mathematical structure of problems, as well as to map the behavior 
paths of subjects (Goldin 1979). As defined by Nilsson (1971), a state­
space for a problem is a set of distinguishable problem configurations, 
called states, together with permitted steps from one state to another, 
called moves. A particular state is designated as the initial state, and 
a set of goal states is distinguished by the conditions of the problem. 
When a problem can be translated into a standard notational lan­
guage, the mathematical sentence or diagram which is the most direct 
translation becomes the initial state. A notational language thus pro­
vides a standard representational framework in which the state-spaces 
of many problems can be embedded. Sometimes for non-standard prob­
lems, the solver is in effect presented with a new notational language, 
with simply stated rules of procedure, and the object is to "learn" the 
language in proceeding from the initial symbol-configuration to the 
goal. A problem state-space is thus a notational language in miniature. 

C Planning Language 

Finally we h!ive the language available to the problem solver for 
heuristic planning or formulation of strategies. This is the language 
in which the solver establishes subgoals, organizes trial-and-error 
search, seeks analogous problems, or engages in the many other forms 
of planning described by Polya. Thus it is a language about prob-
lem solving as well as a language for problem solving. It appears that 
children and adults engage in heuristic planning to a considerably 
greater extent than they can describe explicitly. One of the goals of 
protocol analysis in studying problem-solving behavior is to describe 
from an information processing standpoint the planning which occurs, 
based on a transcript of a subject's "thinking aloud" statements. It 
would be valuable to systematize such language so that it could be 
used in the teaching of problem solving. 

Figure 1 shows the various levels of language available for prob­
lem solving. The perspective of this paper is to treat all of the levels of 
language as "existing" apart from the individual problem solver, defin­
ing them in relation to ~population of problem solvers sharing a 
common "mathematical language." 
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Figure 1. Relationships among levels of language available for problem solving. 

II Examples 
In this section we describe two examples which il!ustrate the ~oncepts 
introduced above. In addition they illustrate the Imp~rtant pomt that 
small changes in the statement of a problem can result m ~arge changes 
in problem-solving processes, even when the mathematical structure 
of the problem is held fixed. 

A Plants and Flowerpots, Cats and Dogs . . . 
The following problems were used with elem~ntary,Jumor_high, and 
senior high school students (Caldwell & Goldm 1979; Goldm & Cald-

well1979): 
1 Alan bought an equal number of plants and flowerpots. Each 
plant cost three dollars and each flowerpot co~t five dolla~s, so that 
he spent 48 dollars in all. How many plants did Alan buy· 
2 Jane has an equal number of dogs and cats. If she had twice ::'-s 
many dogs and four times as many cats, she would have 42 pets m 
all. How many dogs does Jane have? 

The two problems were originally intended to be parallel, except t~at 
the first problem is stated factually and the second ?as a hypothetical 
component. It turned out that Problem 1 was less difficult than Prob-
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lem 2 for every school population studied, but not necessarily for the 
reason expected. 

The languages of the problem statements have values for syntax 
variables which are quite close. Both problems have three sentences; 
Problem 1 has 33 words and Problem 2 has 34 (excluding articles). 
Both problems contain three items of numerical information, with the 
first two (small) numbers written in words and the third (larger) num­
ber written as a numeral. The grammatical complexity of the two prob­
lems is comparable, as measured by a "syntactic complexity coefficient" 
developed by Botel, Dawkins, and Granowsky (1973). The question 
sentences occur at the end of both problems, and are of exactly parallel 
length and grammatical construction. The two problems differ in syn­
tax in the factual/hypothetical variable. There are other minor syntactic 
differences as well; the second problem, for example, uses the pronoun 
"she" twice, while the first uses the pronoun "he" but once. 

The notational language of algebra provides a standard 
representation for each of these problems (unlikely to be available, of 
course, to the students in elementary or lower junior high school grades). 
With the obvious choices ofletters for unknowns, Problem 1 t ranslates 
to: P = F, 3P + 5F = 48; while Problem 2 translates to: D = C , 2D 
+ 4C = 42. Tl'l.ese two systems of equations can be solved in exactly 
the same manner, and in exactly the same number of steps, to yield 
P = 6 (for the first problem) and D = 7 (for the second). We therefore 
say that in this representation, the two problems have the same struc­
ture. An alternate notationa l language, often used by younger children, 
involves the use of"guess and check" procedures. For example, the 
child may first make a "guess" as to the number of plants, and compute 
the total cost. If this is too low, a new "guess" is made. Schematically, 
we have something like this: "If 1 plant, 1 flowerpot , 3 + 5 = 8, too 
low; if 2 plants, 2 flowerpot s, 3 x 2 = 6, 5 x 2 = 10, 6 + 10 = 16, st ill 
too low; ... . " until the t rial "6 plants" occurs. This procedure can also 
be used to find the number of dogs in the second problem. Some chil­
dren are able to carry out these procedures aloud, without the use of· 
written notation at all. Whether written or ora l, it is convenient to 
think of the procedure as occurring in a formal language cont aining, 
for example, "trial" statements and "comparison" statements acting 
on a domain of whole numbers (the "search space"). Such procedures 
have been examined by Harik (1979). 

The planning which takes place when these problems a"re solved is 
often silent. The algebra student may say, "First I will write down 
some equations, then I will solve them," and the grade school student 
may comment, "Let's try some numbers. " Along the way, additional 
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Figure 2b. One way to visualize 
the cats and dogs. 

planning may occur aloud; for example, "Skip some numbers." Most 
often the observer is left to infer the nature of the planning which 
occurred, through analysis of the solver's verbal protocol. 

'furning to the process oftranslation from the problem statements to 
algebraic notation, we note that these problems contain "key words"­
words which very frequently translate to particular mathematical 
operations. For example, the phrases "Each .. . cost" and "times as 
many" translate to multiplication ( x ), while "in all" translates to addi­
tion ( + ). Since such terms occur nearly in parallel in the two problems, 
students who translate directly from the problem statement to nota­
tionallanguage (as in Figure 1) should arrive at parallel systems 
of equations. 

On the other hand, the real-life situations described by the two 
problem statements are quite different. Figure 2 depicts one way in 
which these may be visualized. This difference allows the following 
method of solution for Problem 1 , which is not available for Problem 
2. In Problem 1 the picture suggests: "Each plant cost $3 and each 
flowerpot cost $5, so that the pair cost $8. Since Alan spent $48, he 
bought 48 -;- 8 = 6 plants." The analogous line of reasoning for Prob­
lem 2 is extremely awkward to phrase or to visualize, even though the 
problems are of corresponding mathematical structure. For this rea-
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son, the original intent of creating problems which were parallel except 
for the factual/hypothetical variable was not entirely achieved. Refer­
ring again to Figure 1, the language of the problem statement de­
scribed a "real-life" situation which in turn suggested a notation (3 + 
5 == 8, 48 -;- 8 = 6) different from that obtained by direct translation, 
and in this case more efficient. 

B A Checkerboard and Paper Clips 
This well-known problem provides a second example for discussion: 

3 Consider an 8 X 8 arrangement of squares, from which diagon­
ally opposite corner squares have been removed (Figure 3). A paper 
clip may be placed so as to cover two squares adjacent horizontally 
or vertically, as in the illustration. Can all the squares be covered 
by paper clips without overlap? If so, how; if not, why not? 

The problem statement describes a concrete apparatus which itself 
can serve as a notation for making moves. Often solvers proceed to 
experiment by placing paper clips, until after several trials they ac­
knowledge their inability to achieve the goal. During this stage of 
problem solving, little overt planning may occur. Atwood, Masson, 
and Polson (1~80) discuss a model for problems which are similar to 
this one in that successor states are generated from an initial state by 
application of a single rule of procedure. Their basic assumption is 
that subjects do not plan, but use only information from the current 
problem state and those which immediately follow to make each move. 
In a study of "water jug" problems, they found their model to account 
adequately for subjects' behavior. It may well be the fact that a nota­
tion is provided by the problem itself which encourages subjects, at 
least initially, to restrict themselves to mechanical moves within 
the notation. 

In Problem 3, however, planning is necessary if the solver is to 
proceed beyond the observation that the trials do not succeed. More 
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Figure 3. 
Diagram for Problem 3. 
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Figure 4. 
Trying to solve 
a simpler problem. 

sophisticated or "educated" problem solvers might even engage in 
planning from the start. For example, the heuristic advice, "Try to 
solve a simpler related problem," may lead to examination of the 2 x 2 
case (clearly impossible), the 3 x 3 case (impossible since there are an 
odd number of squares), and the 4 x 4 case, which is quite similar to 
the given problem but allows much more rapid exploration (Figure 4) . 
Trials on the 4 x 4 case may lead to the observations that diagonally 
attached squares often remain uncovered after a trial, and that the 
same squares seem to remain in a variety of trials. 

One way to achieve insight into this problem is to improve the 
notation by coloring those squares which remain after various trials. 
'The decision to do this requires the ability to think or talk about the 
language being used to represent problem states; i.e., to think on the 
level of planning language. The pattern of colored squares which re­
sults is that of an ordinary checkerboard. Now it can be observed that 
a paper clip always covers a colored square and a white square. Since 
in the initial 8 x 8 problem there were 32 colored squares and only 
30 white squares, and they are being reduced in equal numbers, the 
squares cannot all be covered by paper clips- there will always be 
two colored squares left over. 

Possibly Problem 3 would be less difficult if its statement re-
ferred to "an 8 x 8 checkerboard" instead of "an 8 x 8 arrangement 
of squares," or if one set of squares were shaded in the diagram. The 
original notation was less effective because essential information was 
not visually apparent in the representation of a state (although it 
could have been obtained of course by counting). Again a small change 
in the problem statement, which does not affect the problem structure, 
suggests a substantial change of notation which in turn facilitates 
the problem solution. 

III Efficient Notational Language and 
the Structure of Problem Representations 

This section first looks at examples of efficient and inefficient notation 
in standard representational frameworks. Then we examine how, in 
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non-standard representations, the choice of symbolism can illuminate 
or conceal important structural features such as problem symmetry, 
or affect the complexity of each move. 

A Standard Languages of Mathematics 
Much of the progress of mathematics across history is attributable to 
the development of improved systems of numeration and modern 
algebraic notation. Arithmetic problems which would have posed 
formidable challenges in ancient Greece or Rome can be solved by to­
day's school-children. The process of experimentation and notational 
change is an ongoing one today in algebra and analysis. From the per­
spective of problem solving, an effective notation should have certain 
characteristics, among which are the following: (1) Symbol-configura­
tions should be reasonably concise, with information most likely to be 
important made visible rather than suppressed. The number of steps 
needed to move from one configuration of symbols to another should 
be small. (2) 'lb the extent that concepts are parallel mathematically, 
they should be represented in parallel syntactically. '1\vo examples 
will illustrate these points. 

When the "pew mathematics" was introduced in the 1950's and 
1960's, precision of meaning in notation was sometimes emphasized at 
the expense of problem-solving effectiveness. The "raised minus sign" 
was introduced to denote negative numbers (additive inverses), and 
-3 was called "negative three," not "minus three." "Minus" was re­
served for the operation of subtraction, with "8 - 6" defined as 
"8 + - 6." Operations such as addition, subtraction, multiplication, 
and division were treated strictly as binary operations (acting on two 
numbers at a time), and each step had to be justified with reference to 
the appropriate structural property of the number system (associative 
property for addition, commutative property for multiplication, etc.). 
A consequence of rigid adherence to these rules might be the following 
sequence of steps in algebra: 3X + 7 = 19 [given], (3X + 7) + -7 = 
19 + -7 [addition of the same number to equals yields equals], 
(3X + 7) + - 7 = 19 - 7 [definition of subtraction], (3X + 7) + - 7 = 
12 [renaming], 3X + (7 + -7) = 12 [associative property for addi­
tion], 3X + 0 = 12 [additive inverse], 3X = 12 [additive identity], 
(1!3)(3X) = (113)12 [multiplication of equals by the same number 
yields equals], ((113)3)X~ (113)12 [associative property fo:r:.multi­
plication], ((113)3)X = 4 [renaming], 1X = 4 [multiplicative inverse], 
X = 4 [multiplicative identity]. 

Obviously the purpose of an exercise such as the above is to develop 
a sophisticated awareness of the use of axioms, and not to facilitate 
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efficient problem solving. The efficient problem solver would write 
3X + 7 = 19, 3X = 19 - 7 = 12, X = 12 + 3 = 4. Unfortunately 
many teachers and textbooks stressed the precision of the axiomatic 
notation at the expense of facility with the usual notation, and basic 
computational and problem-solving skills suffered. The axiomatic 
language in this case requires more steps, and is less concise. 

An example of notational improvement is taken from the APL 
computer language (Iverson 1966 and 1969). It is common to write 
max {a,b} to denote the larger of two real numbers a and b, and a b to 
represent a taken to the b th power. In APL these and many other 
operations are assigned special symbols, and treated as binary func­
tions. Thus, 3 1- 7 denotes the larger of3 and 7, having the value 7; 
2 j 5 stands for 2 to the 5th power, and has the value 32. Borrowing 
just these symbols from APL and incorporating them into ordinary 
arithmetic, we see that their place in the syntax becomes the same as 
that of +, -, x , and +. Structural properties for + and x , such as the 
associative and commutative properties, can now be tested for r and 
j <1- is commutative and associative, j is neither). The distributive 

property for multiplication across addition, which states (left distri­
butive property) that a x (b + c) = (a x b) + (a x c )for all real 
numbers a, b, and c, can be generalized and tested for various pairs of 
operations: for example, a + (b 1- c) = (a + b) r (a +c). 

Thus the principle of using syntactically parallel notation tore­
present mathematically parallel concepts allows greater insight at the 
elementary level into the meaning of structural properties ofbinary 
functions. APL contains many other notational innovations which 
have potential application to the teaching of mathematics (Peelle 1974 
and 1979). 

B Non-Standard Problem Representations 
Sometimes a standard representation is not available-either the 
problem itself poses a novel symbol-configuration together with rules 
of procedure, as in the "checkerboard problem" above, or the solver is 
expected to construct a new representation for the problem. State­
spaces for such problems have been used to define task structure 
variables, to characterize "relatedness" between problem representa­
tions, and to record the behavior paths taken by subjects (Goldin 1979). 
'1\vo problems are said to be isomorphic when the states, legal moves, 
and solution paths of one can be placed in one-to-one correspondence 
with the states, legal moves, and solution paths of the other. A pro­
blem has symmetry if it is isomorphic to itself in more than one way. 

We shall consider the example of the Tower of Hanoi problem and 
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its isomorphs, which have been studied by several authors (Simon & 
Hayes 1976; Hayes & Simon 1977; Luger 1979; Luger & Steen 1981): 

4 Four concentric rings (labeled 1, 2, 3, 4 respectively) are placed 
in order of size, the smallest at the top, on the first of three pegs 
(labeled A, B, C), as in the diagram: 

1. 
2. 
3 . 
4. 

A B c 

The object of the problem is to transfer all of the rings from peg A to 
peg C in a minimum number of moves. Only one ring may be moved 
at a time, and no larger ring may be placed above a smaller one on 
any peg. 

The complete state-space for this problem is shown in Figure 5. Each 
state is labeled with four letters, referring to the respective pegs on 
which the four rings are located. From the network of states the 
problem sy~etry is apparent- the roles of pegs A, B, or C can be 
exchanged without changing the structure of the problem. In 
particular, state BBBB is conjugate to the goal state CCCC, but is not 
itself a goal. The state-space displays forward-backward symmetry in 
that if CCCC is taken as the initial state and AAAA as the goal, the 
problem structure is unchanged. 

CAAA 

BBAA . 
BBCA . 

CCCA 

. ABC» 

CABB 

BBBB .. 

• AAAA (start) 
. BAAA 

. BCAA 
. CCAA 

. CCBA 

BBBA 
. BBBC 

Figure 5. 
State-space representation 
for the 4-ring 
Tower of Hanoi problem. 

AABC 

ecce (goal) 
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goal~ 

-start for half 
the "monster-globe" 
problems 

Figure 6. State-space 
for "monster-globe" 
problems of 
Hayes and Simon, 
isomorphic to 
the 3-ring Tower 
of Hanoi problem. 

start for remaining t "monster-globe" problems 

In the above version of the problem, studied by Luger, the pegs and 
the board present the solver with a notation for keeping track of 
moves and solvers proceed by means of successive trials. This nota­
tion is'extremely efficient for determining the availability of legal 
moves, but it does not preserve information about the history of moves 
which have occurred. The symmetry that is present is overt- "there 
to be noticed"- in the external representation. During the course of 
problem solving, some solvers who have started on a path headin_g "to­
wards" state BBBB in the state-space in Figure 5 come to recognize 
the symmetry, and are able to correct to the symmetrically conjugate 
path leading to the goal. Additional discussion of symmet~y as a task 
variable, and of overt vs. hidden symmetry, may be found m the re­
ferences (Goldin 1979; Luger 1979; Goldin & McClintock 1980; Luger 
& Steen 1981). . 

Hayes and Simon employed isomorphs of the 3-ring 'lbwer of Hanoi 
problem in order to study the effects of changing the problen: stat~­
ment on the notations adopted by subjects. The tasks were eight dif­
ferent "monster-globe" problems, stated in complicated language:. all 
of which (when represented most efficiently) had state-spaces as m 
Figure 6. The tasks differed from each other in two ways: In Transfer 
problems a monster or globe was moved, while in Change problems a 
monster or globe changed size. Secondly, in Agent problems the mon­
sters moved or changed the globes, while in Patient problems they 
moved or changed themselves. Some of the problems also differed from 
the others in the description of the initial state. 
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--- ... 

Since no external notational language was presented to subjects 
beyond the problem statement, it was necessary for them to devise 
their own. Three main types of notation were "invented" under these 
conditions, called "operator-sequence" notation, "state-matrix" nota­
tion and "labeled-diagram" notation. These notations preserved the 
hist~ry of moves, but were of varying efficiency for testing the legality 
of moves, and not nearly so efficient as the rings-and-pegs apparatus. 
The types of notation remained relatively constant in frequency across 
problem variables. However, Transfer problems and Change problems 
elicited different notations within the broader categories of operator­
sequence and state-matrix notations, and Agent and Patient problems 
elicited some differences within the operator-sequence category. For 
example in the operator-sequence category, indirect naming of objects 
was used more frequently with Change problems than with Transfer 
problems. In the state-matrix category Transfer problems resulted in 
symbols being moved from column to column, while Change problems 
resulted in symbols being altered within each column. Hayes and 
Simon postulate how the notational differences might have been 
caused by the differences in the problem statements. 

It was observed that Change problems required greater times to 
solution. Chang~ problem notations required more steps to test the 
problem conditions in selecting legal moves than did Transfer problem 
notations. This study is convincing in demonstrating how the choice of 
notation may affect problem difficulty through increasing the com­
plexity of move selection. 

In a discussion of the well-known "missionary-cannibal" problem, 
the author has suggested that the extra steps needed to test moves for 
legality may be described by enlarging the formal state-space to in­
clude additional "testing" moves (Goldin 1979, p. 135). In the present 
case this would result in a more complex state-space in which the 
states of Figure 6 are embedded. Such an embedding of one state­
space into another is an example of one kind of state-space homo­
morphism. In general, homomorphisms may be used to describe the 
different kinds of relatedness which can exist between alternate pro­
blem notations. 

The preceding examples lead to the following observations about 
efficient notational language: (1) Features of problem states which 
have to do with nearness to~olution (as we saw in Problem 3j__should 
be visible in the notation. (2) Problem symmetry should be overt ra­
ther than hidden wherever possible. (3) Problem representations are 
more efficient when the information needed to move from one symbol­
configuration to the next is visually apparent in t he notation, or re­
quires few steps to obtain from each state. 
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IV Planning Language 
This section focuses very briefly on the specialized domain of ordinary 
English devoted to heuristic planning. It is plausible that just as nota­
tional language can be efficient or inefficient for problem solving, so 
can planning language. Explicit attention to language at the planning 
level would then be necessary before we can teach problem solving in 
the same way that we now teach students mathematical notation. It 
may be valuable to introduce planning symbolism in order to make 
more visible the steps in the planning process. 

Polya (1945) proposed to organize heuristic processes into four main 
stages: understanding the problem, devising a plan, carrying out the 
plan, and looking back. Much of his subsequent work was devoted to 
elaborating on the processes contributing to each stage. Wickelgren 
(1974) sought to improve problem-solving planning by introducing 
more technical language from artificia l intelligence research - for 
example, he discusses "hill-climbing" which is a metaphor for state­
space search algorithms with evaluation functions used in mechanical 
problem-solving programs. Schoenfeld (1979) devised a more elaborate 
stage model for organizing heuristic processes, reproduced in Figure 7. 

An earlier version of Schoenfeld's model formed the basis for an ex­
traordinarily detailed process-sequence coding scheme developed by 
Lucas et al. (1979), in which over fifty different symbols are used to rep­
resent process and outcome categories observed during problem sol­
ving. More recently, the author worked with Carpenter, Kulm, Schaaf, 
and Smith toward grouping these into a more manageable system for 
recording the processes used by junior high school students (Kulm, et 
al. 1981). This system is still undergoing revision, but in order to con­
vey its flavor a partial dictionary is given in Figure 8. Next to each 
process code, the language level to which this code refers, or the trans­
lat ion process to which it refers, has been indicated. Thus a correspon­
dence can be drawn between the observed processes in problem sol­
ving, and the kinds oflanguage depicted in Figure 1. 

The domain of planning language about which we can say the most, 
based on examples in t his paper, is that which governs or talks about 
notational language. Silver, Branca, and Adams (1980) have examined 
the role of "metacognition" in ·problem solving. In fact, planning 
language as described in the present paper is a "meta-language" with 
respect to formal problem-solving notations. It includes the following 
kinds of steps: adoption of a notational language; choice of a goal or 
subgoal state within a notational language; modifying notational lan­
guage to describe simpler problems; modifying notational language to 
reduce the complexity of moves; modifying notational language to 
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? Given Problem 

ANALYSIS : Understanding t he statement 
Simplif ying the problem 
Reformulationg the problem 

t Useful Formulation: 
access to principles 

and mechanisms 

I More Accessible 
Related Problem 

DESIGN: Structuring the argument 
Hierarchical decomposition: 

globa l to specific 

~ Schema tic Solution 

IMPLEMENTATION: 
Step- by-step execution 
Local verifica tion 

I 
~ Tent a t ive Solution 

VERIFICATION : 
Specific tests 
General tests 

• 6 Genera l Solution 

--> -
r 

EXPLORATION: 
Essentially equiva l ent 

problems 
Slightly modif ied prob l ems 
Broadly modified problems 

Figure 7. Schoenfeld's schematic overview of problem-solving stages 
(abridged from Schoenfeld 1979). 

make symmetry more overt; and modifying notational language to 
make more visible features of problem states describing nearness to 
solution. In our discussion we have seen examples of how such nota­
tional modifications could greatly assist the problem solver. The in­
efficient or naive planner is unable or unwilling to t ake such steps. It 
therefore seems reasonable to conjecture that explicit introduction of 
~la~ing l.anguage into problem-solving instruction, including pract­
Ice m talkmg about problem notations and evaluating their effective­
ness, could substantia lly improve higher problem-solving skills. 

235 Goldin I Language & Problem Solving 



Kulm, G., Campbell, P. F., Frank, M., Talsma, G., & Smith, P. (1981). Analysis 
and synthesis of mathematics problem solving processes. NCTM 59th 
Annual Meeting Presentation. 

Lester, F. (1980). "Research on mathematical problem solving." In: R. J. 
Shumway (Ed.), Research in Mathematics Education. Reston, Va.: NCTM. 

Loftus, E . J . (1970). An analysis of the structural variables that determine 
problem-solving difficulty on a computer-based teletype. Tech. Report 162, 
lnst. for Mathematical Studies in the Social Sciences, Stanford University. 

Lucas, J. F., Branca, N., Goldberg, D., Kantowski, M.G., Kellogg, H., & Smith, 
J.P. (1979). "A process-sequence coding system for behavioral analysis of 
mathematical problem solving. In: G. A. Goldin & C. E. McClintock (Eds.), 
op. cit. 

Luger, G. F. (1979). "State-space representation of problem-solving behavior. 
In: G. A. Goldin & C. E. McClintock (Eds.), op. cit. 

Luger, G. F., & Steen, M. (1981). "Using the state-space to record the 
behavioural effects of symmetry in the Thwer of Hanoi problem and an 
isomorph." Int. J. Man-Machine Studies, 14 (in press). 

Nilssen, N.J. (1971). Problem Solving Methods inArtificiallntelligence. New 
York: McGraw-Hill. 

Peelle, H. A. (197 4). "Computer glass boxes: teaching children concepts with 
A Programming Language." Educational Technology, 14, 9-16. 

Peelle, H. A. (1979). "Teaching mathematics via APL (A Programming 
Language)." The Mathematics Teacher, 72, 97-116. 

Polya, G. (1957). How To Solve It. New York: Doubleday (second edition). 
Polya, G. (1962, 1965). Mathematical Discovery, 1 & 2. On Understanding, 

Learning, and Teaching Problem Solving. New York: Wiley. 
Schoenfeld, A. H. (1979). "Heuristic behavior variables in instruction." In: 

G. A. Goldin & C. E. McClintock, op. cit. 
Silver, E. A., Branca, N. A., & Adams, V. M. (1980). "Metacognition: the 

missing link in problem solving?" In: Proceedings of the Fourth International 
Conference for the Psychology of Mathematics Education, R. Karplus (Ed.). 
Berkeley, Cal.: Lawrence Hall of Science. 

Simon, H. A., & Hayes, J . R. (1976). "Understanding complex task 
instructions." In: D. Klahr (Ed.), Cognition and Instruction. Hillsdale, N.J.: 
Erlbaum. 

Webb, N. (1979). "Content and context variables in problem tasks." In: G. A. 
Goldin & C. E. McClintock, op. cit. 

Wickelgren, W. (197 4). How to Solve Problems: Elements of a Theory of 
Problems and Problem Solving. San Francisco: W. H. Freeman. 

238 Visible Language XVI 3 1982 

Symbols, Icons, and Mathematical Understanding 

William Higginson 

Extracts are taken from the biographies of Hobbes, Rousseau, Darwin, and 
Russell which refer to their mathematical education. The common feature of 
an attraction toward geometry and an aversion to elementary algebra is noted. 
These experiences are analysed using theoretical positions promulgated by 
Davis, Hersh, Skemp, and Bruner. The central thesis is that these men pro­
bably have had difficulty learning elementary algebra because they had failed 
to develop a strong image or iconic representation of the concepts involved. 
This thesis is developed in relation to "squaring a binomial," the concept which 
troubled both Rousseau and Russell. 

Mathematics is often considered a difficult and mysterious science, 
because of the numerous symbols which it employs. 
A.N. Whi1ehead 

Much of the power of mathematics stems from the potency of its sym­
bols. There is, however, a price to be paid for this potency. The symbols 
which serve as highly effective tools for some are the most formidable 
of barriers for others. In the following pages a thesis is outlined which 
attempts to account for some of the difficulties which learners meet 
when studying mathematics. The method of approach is largely bio­
graphical; the essence of the argument: that we have paid too little 
attention to the role of images in mathematical understanding. 

The unique cluster of insights, associations, and emotions which 
characterizes every encounter of individual with idea is never easy to 
capture. One of the few sources to which we can turn in such a quest is 
biographical literature. The examination of this literature for accounts 
of man meeting mathematics reveals some interesting commonalities 
in the experiences of a number of people. For our purposes we consider 
four distinguished thinkers; Thomas Hobbes (1588-1679), Jean­
Jacques Rousseau (1712-,],778), Charles Darwin (1809-1882), and 
Bertrand Russell (1872-1970). "-

One of the most striking features of John Aubrey's marvelous col­
lection of short biographies, Brief Lives, is the picture it gives of the 
impact of the release of the mathematical sciences from the Greek and 
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Latin tongues. Henry Gellibrand is described as, "good for little a great 
while, till at last it happe!led accidently, that he heard a Geometrie 
Lecture," and for Richard Stokes, M.D., we find, "His father was Fel­
low of Eaton College. He was bred there and at King's College. Scholar 
to Mr. W. Oughtred for Mathematiques (Algebra). He made himself 
mad with it, but became sober again, but I fear like a crackt-glasse ... . 
Became a Sott." Few entries can compare for vividness, however, to 
the one for the philosopher Hobbes where his first exposure to geome­
try is noted. 

He was 40 years old before he looked on Geometry; which happened 
accidentally. Being in a Gentleman's Library, Euclid's Elements lay 
open, and 'twas the 4 7 El. libri I. He read the Proposition. By G-, 
sayd he, (he would now and then sweare an emphaticall Oath by 
way of emphasis) this is impossible! So he reads the Demonstration 
of it, which referred him back to such a Proposition; which propo­
sition he read. That referred him back to another, which he also 
read. Et sic deinceps that at last he was demonstratively convinced 
of that trueth. This made him in love with Geometry. 

I have heard Mr. Hobbes say that he was wont to draw lines on his 
thigh and on the sheetes, abed, and also multiply and divide. (p. 309) 

Mathematical ideas play a very limited role in Rousseau's spirited 
autobiographical Confessions. There are, however, two passages 
which are of interest. The first perhaps tells us something of 
eighteenth century attitudes about mathematicians. In 17 44 
Rousseau had a short and less than satisfactory liason with a sultry 
Venetian courtesan called Giulietta. At their parting the vengeful 
young woman advised Rousseau in a cold and scornful voice to "Give 
up the ladies and study mathematics" (p. 302). The other passage is 
more appropriate for our purposes for in it Rousseau describes some of 
his mathematical education as follows: 

I have never been sufficiently advanced really to understand the 
application of algebra to geometry. I disliked that way of working 
without seeing what one is doing; solving a geometrical problem by 
equations seemed to me like playing a tune by turninl;{ a handle. 
The first time I found by calculation that the square of a binomial 
figure was composed of the square of each of its parts added to twice 
the product of one by the other, despite the fact that my multipli­
cation was right I was unable to trust it until I had drawn the fig­
ure on paper. It was not that I had not a great liking for algebra, 
considered as an abstract subject; but when it was applied to the 
measuring of space, I wanted to see the operation in graphic form; 
otherwise I could not understand it at all. (p. 3) 

240 Visible Language XVI 3 1982 

Charles Darwin's massive contribution to the intellectual life of the 
nine~eenth and tw~ntieth .centuries would most likely have come as a 
considerable surprise to his youthful contemporaries, for his scholastic 
record as a schoolboy and undergraduate was far from prepossessing. 
In 1847, sixteen years after receiving his B. A. from Cambridge, Dar­
win wrote in a letter to his friend Hooker, "I am glad you like my Alma 
Mater, which I despise heartily as a place of education." In another 
passage in his autobiography we find: 

During the three years which I spent at Cambridge my time was 
wasted, as far as the academical studies were concerned as com­
pletely as at Edinburgh and at school. I attempted math~matics, 
and even went during the summer of 1828 with a private tutor to 
B~rmouth, but I got o~ very slowly. The work was repugnant to me, 
?h~efly from m!' ~ot be~ng able to see any meaning in the early steps 
m algebra. This Impatience was very foolish, and in after years I 
have deeply regretted that I did not proceed far enough at least to 
understand something of the great leading principles of mathe­
matics, for men thus endowed seem to have an extra sense. (p. 18) 

Darwin's son Francis, who edited the Autobiography and Selected 
Letters of his father, notes in another passage: 

My father's letters to Fox show how sorely oppressed he felt by the 
reading for an examination. His despair over mathematics must 
have been profound, when he expresses a hope that Fox's silence is 
due to "your being ten fathoms deep in the Mathematics; and if you 
are, God help you, for so am I, only with this difference I stick fast 
in the mud at the bottom, and there I shall remain." M~. Herbert 
says: "He had, I imagine, no natural turn for mathematics and he 
gave up his mathematical reading before he had mastered,the first 
part of algebra, having had a special quarrel with Surds and the 
Binomial Theorem. (p. 114) 

It is perhaps the pa'ssion which most catches one's attention in these 
passages. One might well expect, for instance, that men whose contri­
butions were to non-mathematical fields should have had certain dif­
ficulties with the discipline. It is, however, something more of a sur­
prise to find that one of the finest logico-mathematical minds of the 
last hundred years experienced difficulties with elementary algebra 
almost identical to those of Rousseau. In his autobiography (1968) 
Bertrand Russell writes: 

«:> 

The beginning of Algebra I found far more difficult, pe;Kaps as a 
result of bad teaching. I was made to learn by heart: "The square of 
the sum of two numbers is equal to the sum of their squares in­
creased by twice their product." I had not the vaguest idea what 
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this meant and when I could not remember the words, my tutor 
threw the book at my head, which did not stimulate my intellect in 
any way. (p. 34) 

This difficulty was to prove a temporary one: "After the beginning 
of Algebra, however, everything else went smoothly" (p. 34). And some 
seventeen years later Russell would be embarking on what has been 
called "the longest chain of deductive reasoning that has ever been 
forged" (Spectator, p. 142). This, of course, was Principa M~them~tica, 
the three-volume treatise on the foundations of mathematics which 
Russell co-authored with Alfred North Whitehead. The anonymous 
reviewer in the Spectator wrote of a work which "may be said to mark 
an epoch in the history of speculative thought" but went on to observe: 

It is easy to picture the dismay of the innocent person who out of 
curiosity looked into the later part of the b?ok. He would com~ upon 
whole pages without a single word ofEnghsh below the headlme; 
he would see instead, scattered in wild profusion, disconnected 
Greek and Roman letters of every size interspersed with brackets 
and dots and inverted commas, with arrows and exclamation marks 
standing on their heads, and with even more fantastic signs for 
which he would with difficulty so much as find names. (p. 142) 

We wish to set our analysis of these biographical excerpts in the 
context of the view offour theoreticians: the mathematicians Davis 
and Hersh on the role of symbols in mathematics, the mathematics 
educator Skemp on types of mathematical understanding, and the 
cognitive psychologist Bruner on modes of symbolic representation. 

In their recent book Davis and Hersh (1980) have a section entitled 
"Symbols" in which they observe: 

What do we do with symbols? How do we act or react upon seeing 
them? We respond in one way to a road sign on a highw~y, i~ an­
other way to an advertising sign offering a hamburger, m still other 
ways to good-luck symbols or religious icons. We act on_mathemat­
ical symbols in two very different ways: we calculate with them, 
and we interpret them. 

In a calculation a string of mathematical symbols is processed 
according to a standardized set of agreements and co~vert:e~ i~to 
another string of symbols. This may be done by machine: If ~t Is 
done by hand, it should in principle be verifiable by a machine. 

Interpreting a symbol is to associate it with some concept or men­
tal image, to assimilate it to human consciou~ness. The rule~ for 
calculating should be as precise as the operatiOn of a computl~g 
machine: the rules for interpretation cannot be any more precise 
than the communication of ideas among humans. (p. 121) 
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Skemp (1976) has made a distinction between "instrumental" and 
"relational" understanding which has proven to be useful in analysing 
situations in mathematics education. In an instrumental approach to 
the teaching of mathematics major emphasis is placed on the accept­
ance and application of definitions and rules. The questions of why 
one would want such definitions and how the particular rules come in­
to being are not appropriate in the instrumental approach. They are, 
however, essential features of the relational approach. 

One of the most complete theories about the nature of the symbol­
izing process is the one developed by Jerome Bruner and his co­
workers over a number of years (1966, 1968, 1973). Bruner (1973) 
distinguishes three modes of representation- the enactive, the iconic, 
and the symbolic: 

Their appearance in the life of the child is in that order, each 
depending on the previous one for its development, yet all of them 
remaining more or less intact through life . ... By enactive repre­
sentation I mean a mode of representing past events through ap­
propriate motor response .... Iconic representation summarizes 
events by the selective organization of percepts and of images, by 
the spatial, temporal, and qualitative structures of the perceptual 
field and thQir transformed images. Images stand for perceptual 
events in the close but conventionally selective way that a picture 
stands for the object pictured. Finally, a symbol system represents 
things by design features that include remoteness and arbitrari­
ness. A word neither points directly to its referent here and now, 
nor does it resemble it as a picture. (p. 328) 

An analysis of the biographical statements of the four individuals in 
question reveals two strong common underlying themes. The first is 
that of an attraction, often a passionate one, for geometry. We have 
noted Hobbes' addiction, and Russell's feelings were no less strong. He 
writes, for instance, "At the age of eleven, I began Euclid with my 
brother as my tutor. This was one of the great events of my life, as daz­
zling as first love. I had not imagined that there was anything so deli­
cious in the world" (1968, p. 33). 

Even the algebraphobic Darwin had enjoyed geometry. "Again in 
my last year I worked with some earnestness for my final degree of 
B. A., and brushed up my Classics, together with a litt le Algebra 
and Euclid which latter gii!,ve me much pleasure as it did at school" 
(1958, p. 19). 

Rousseau too was attracted to geometry, but he makes a significant 
qualification. "I went on from there to elementary geometry .... I did 
not like Euclid, who is more concerned with a series of proofs than 
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with a chain of ideas; I preferred the geometry of Father Lamy, who 
from that time became one of my favourite authors, and whose works I 
still re-read with pleasure" (1970, p. 226). 

The second commonality is a strong dislike for situations in elemen­
tary algebra where it proved difficult to attach any meaning or im­
agery to the manipulation of symbols. We have seen the views of 
Rousseau, Russell, and Darwin. Aubrey writes of Hobbes in this con­
nection: "He would often complain that Algebra (though of great use) 
was too much admired, and so followed after, that it made men not 
contemplate and consider so much the nature and power of Lines" 
(p. 309). 

With the theoretical positions sketched previously in mind we can 
set the experiences of Hobbes, Rousseau, Darwin, and Russell in a 
somewhat more general context. What we have is perhaps not so 
much a difference between algebra and geometry as branches of 
mathematics, as rather a situation where the algebra is learned in­
strumentally, and the geometry relationally. The nature of geometry 
is such that it lends itself easily to the production of images. This is 
not so clearly the case with algebra. It is possible, of course, (note the 
case of Rousseau) to teach geometry instrumentally as well, with the 
same negative results. 

'Ib recapitulate: we see in these four cases, examples of what is 
probably a very common phenomenon, the presentation of mathe­
matical ideas almost entirely in the symbolic mode of representation. 
The result of this is that learners fail to have any significant under­
standing of the situation. Equivalently, using terms which accentuate 
the iconic nature of their difficulties, they lack insight or fail to see 
what is going on. The possibility of remedying this situation by con­
sciously constructing icons for mathematical symbols is an obvious one. 

We consider as an example the Rousseau/Russell problem of 
(a + b)2

, the squaring of a binominal. From their descriptions it would 
seem that both men were encouraged to learn this concept instru­
mentally. The "rule" is that "the square of the sum of the numbers is 
the sum of their squares increased by twice their product," that is, 
(a + b? = a2 + b2 + 2ab. (An inventive mind like Russell's was able 
to put even the most arcane bits of knowledge to use. Further on in his 
autobiography we find, "I used, when excited, to calm myself by recit­
ing the three factors of a3 + b3 + c3 

- 3abc; I must revert to this 
practice. I find it more effective than thoughts of the Ice Age or the 
goodness of God" [1970, p. 38].) Expressed only in this way, this 
mathematical idea seems little better than a variation on tongue 
twisters of the genre "Peter Piper picked a peck of pickled peppers." 
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or more 
generally 
and 

Figure 1. 

12 X 12 = (10 + 2) (10 + 2) = 100 + 20 + 20 + 4 = 144 
12 X 12 = (11 + 1) (6 + 6) = 66 + 66 + 6 + 6 = 144 

8 X 16 = (2 + 6) (13 + 3) = 26 + 6 + 78 + 18 = 128 

Yet this need not be, since this is nothing more in some senses than a 
compact way of noting an infinite number of arithmetic statements of 
the sort listed in Figure 1; this fact seems seldom to be mentioned in 
textbooks on elementary algebra. 

An even more surprising omission from these books is an obvious 
iconic representation for the symbolic statement. (It is almost cer­
tainly the same one which gained Rousseau's trust.) This icon hinges 
on the fact, so central to Greek mathematics, that just as we can asso­
ciate the sum 9ftwo positive integers with a particular line segment, 
we can associate their product with the area of a rectangular figure. If 
we have two positive integers a and b, a powerful image of the square 
of their sum is a square of dimension (a + b). As can be seen from Fig­
ure 2, this large square is composed of four rectangles: a square of side 
a, a square of side b, and two identical rectangles of area ab. 

Once openec!, this door leads to many other related mathematical 
ideas; for example: the square of a trinomial (a + b + d; the cube of a 
binomial (a + b)3

; the difference of two squares (a2 
- b2

); Russell's fac­
toring problem; the square root of two, i.e., find b so that (1 + b)2 = 2. 
It should probably be noted, as well, that this area is a critically im­
portant one in mathematics. It took the genius of a Newton to fully 
generalize this situation to the case of (a + b)n and this result was a 
key step in the development of the calculus. It is not reassuring to 
observe that we have in many ways progressed very little from the 
time of Rousseau as far as the teaching of this concept is concerned. 

b ab b2 

.... 
a a2 ab 

Figure2. 
a b 
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Figure 3. The expansion of a binomial by the FOIL law. The product of the sums 
is equal to the sum of the products of the first, outside, inside and last terms. 

The most popular technique for explaining the product of two binom­
ials in many parts of North America at present is the "FOIL Rule," a 
blatant appeal to authority (see Figure 3). (There are those who would 
contend that the whole purpose of teaching mathematics in schools is 
to have children learn how to accept authority, very often in forms 
which seem irrational, meaningless, and arbitrary. However, that is 
another, albeit very important, issue.) 

But how typical is our example? Is it possible that only some 
mathematical concepts have iconic representations or can one legi­
timately expect to find images playing an important role in the de­
velopment of all mathematical ideas? It must be acknowledged that 
the idea of a 'mental image' is one that has been hotly debated in a 
number of disciplines over the years. Philosophers, psychologists, 
artists, and mathematicians have all, at one time or another, partici­
pated in the fray (Arnheim 1972, Gombrich 1959, Hannay 1971, 
Mason 1980, Paivio 1971, Plato, and Wertheimer 1968) and there are 
few principles in the area which would gather universal acceptance. 
Hadamard's classic work in the field (1954) would seem to show un­
equivocably that imagery is of critical importance in the thought of 
creative mathematicians. He quotes Einstein, for instance, as saying 
"The words or the language, as they are written or spoken, do not 
seem to play any role in my mechanism of thought. The psychical 
entities which seem to serve as elements in thought are certain signs 
and more or less clear images which can be 'voluntarily' reproduced 
and combined" (p. 142). More recently we have the report of the 
mathematician Papert (1980) who tells of the significant role played 
in his intellectual development by the image of gears. In general, how­
ever, as Bruner (1973) notes, the situation is that "we know little 
about the conditions necessary for the growth of imagery and iconic 
representation" (p. 329). 

Any conception of mathematical understanding which emphasizes 
the iconic representation of concepts must acknowledge its roots in the 
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thought of the ancient Greeks. (In his "On Memory and Recollection," 
Aristotle contended that it was "impossible even to think without a 
mental picture"). Iverson (1972, 1980) and Hammersley (1979) have 
written about the limitations of our contemporary mathematical sym­
bols and have made suggestions as to where improvements might be 
made. Looking to the future it seems obvious that there is great poten­
tial for the graphic representation of mathematical ideas through the 
medium of computers (Papert 1980). It remains to be seen whether or 
not we will be able to make mathematical symbols more understand­
able with the aid of computers. In the meantime it is of interest to note 
that 190 years ago, Samuel Taylor Coleridge, then seventeen years 
old, observed in a letter to his brother George: 

I have often been surprized, that Mathematics, the Quintessence 
ofTruth, should have found admirers so few and so languid­
Frequent consideration and minute scrutiny have at length 
unravelled the cause-Viz-That, though Reason is feasted, 
Imagination is starved: whilst Reason is luxuriating in it's proper 
Paradise, Imagination is wearily travelling over a dreary desart. (p. 7) 

• 
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Towards Recording 

Nick James and John Mason 

Behind the formal symbols of mathematics there lies a wealth of experience 
which provides meaning for those symbols. Attempts to rush students into 
symbols impoverishes the background experience and leads to trouble later. 
In conjunction with manipulating objects it is essential to provide time for 
talking about their activities and developing their own informal records be­
fore meeting the formal symbols of adult mathematicians. We present three 
examples of chiidren's work which demonstrate these steps in the struggle 
to move towards recording perceived patterns. 

'lb most people the formal symbols used in mathematics seem cold and 
lifeless. Even the ubiquitous x is literally an unknown quantity with 
little meanin~. Mathematicians often seem content to lend credence to 
this view by talking about mathematics as a formal game. This view 
of mathematical symbols is misleading in its incompleteness. In fact, 
for symbols of any kind to be of value there must be a wealth of back­
ground experience which can be called upon. This article is concerned 
with developing that rich background experience in the important 
phase ofmathematicallearning/investigation which we call TOWARDS 

RECORDING. The struggle to capture an insight which is as yet pre­
articulate is often overlooked in a rush to lead students into formal 
symbols, resulting in an impoverished if not empty background ex­
perience, and producing frustration, anxiety, and math-phobia. We 
present three examples of childrens' work when time was taken to let 
the children participate in the struggle towards recording. The results 
reveal something of the stages in that process. 

Keith and Ranjit (age 12112) 

Task A Choose a rod and make up the equivalent length using 
repeating patterns (an e'iample was given). Figure 1 is hll! one of the 
many pattern sets made by the children. 

Task B Talk about the rods in each row in as many ways as possible 
(several variations were discussed). See Figure 2. 
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Figure 2. Discussion led to the second row from top being described as 
"Pink-and-white .. . (pause) ... four times" 
"Four pink and four white" 
"Four ... (pause) ... white-and-pink" 
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Figure 1. 
Color of rods 
down left side: 

purple rod 
pink rod 
light blue rod 
white rod 
dark blue rod 
red rod 

\sT (<OW Kf"tTii AI'ID RANrtT 

:: 4 piv..~ o..w:l WI...,~ = Purpl« l<ocl. 

= 4- f'""k: ~d Lf wk,h ~ " " 
~ 4- ('i "-l~ + l.l k~ -k )( y : ,, 
zf',v.~i- IJ\...,t~ )< 4 = 11 

" 

"Pu,~ ,w l" k , P'"b., ""'L..;te, P'~k, wl..it« 1 P'"'~ wh.ft 

:4 wh,~e. O..V\cA p,-;..k 
= i 1 p l"k plv.s o.. wk,te. "' 4. 
= 4 pi"'~ t- 4 wl-.,te. jotl\<ld b~cJ~e.r 

~ ' P\"'~ + w""-,t~ '1-. k Figure 3. 

Task C Write down the various ways of talking about the rods. See 
Figure 3. The teacher then asked them questions such as, "lfl read 
Pink + White X 4, what rods would I put out?" All agreed on one pink 
followed by four whites. The attention was drawn to the need for agree­
ment and precision. The crucial task came in a subsequent session. 

Task D What ~ust you write to leave no doubt about which rods you 
mean the reader to put out. Explore this amongst yourselves. Figure 4 
shows what Ranjit wrote. 

?v.t- ~ \Q. Ro~ = 
4 Pu,k O.IAJ. 4 wh,\"g_ J0'"~ to so."\.~.CI..r ~ 

~ \ p'-"' ~ 0.\1\~ \ w l',\-e. JOW.C!~ to<}e te-.o..r x 4-

·~\..,., \< > we-·,tQ. x ~ = 4 Pi."'~ o.Y<d. 4 W \ . .'de j o '"'e.d 

\-o ~eke.e.r- Figure 4. 

Sensing that Keith and Ranjit had struggled to express an as yet pre­
articulate sense of brackets, the teacher then offered Figure 5. 

\ (>'-"'k o.. .... cl. ..,l~f~ 

t·"'~ 
Figure 5. 
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Further discussion elaborated this to the idea of four bags each con­
taining a pink and a white, and drawings like Figure 6 were adopted 
into their records. Later the balloon or bag was partly erased to yield 
the more common bracket (Figure 7). Furthermore, the children had 
begun to get a grasp of the distributive law (Figure 8). Further experi­
ence of this activity and also others involving the distributive law 
helped Keith and Ranjit to establish a strong sense of the use of brack­
ets and the meaning of the distributive law. This is what is meant by a 
wealth of experience supporting the distributive law. The same pro­
cess emerges in the next two examples which are based on investiga­
tions presented to two different age groups. 

Lesley (age 9th) in a group of six children 
Task A With 17 interlocking cubes make a square picture frame. All 
the while the children talked among themselves: "'1\vo pillars of five 
down the side and a band of three along the top and bottom." After 
many trials they finally decided that it was impossible to use all17 
cubes to make a square picture frame. The teacher then asked them 
about other frames and after much discussion, other examples were 
produced (Figure 9). 

Task B How many cubes are needed to make larger frames? Record 
your results! Figure 10 shows Lesley's results. Notice that the 
compelling nature of the underlying pattern has deflected Lesley from 
answering the original question. This will emerge if Lesley is invited 

Figure 8. 

&l,V\\<.,w~-~ X 4 :::: 4 P\"'\<o.v-~ LtW\1\kjoiV\~cQ ~~~r 

01'" 4 (P\11\ \( + w~k)= l,.'f. ~,,J< + lt)(l>-)t_·,~ 
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to check her resolution against the task set. Time spent recording 
results is well rewarded though. In this case Lesley has come to her 
generalization from the support of her neat and systematic record. 
Unfortunately most adults are very reluctant to record results and 
consequently they find it harder than necessary to come to 
generalizations. 

Patterns such as picture frames which invite generalizations lie at 
the heart of pre-algebra, because algebraic symbols arise in response 
to a need to record a generalization succinctly. The next task sequence 
shows how this can happen. 

From picture frames to algebraic expressions 
Task A Explore the range of possible picture frame designs to sur­
round a 3 X 3 photograph. The children got together in groups and 
spent fifteen minutes producing a series of rough sketches drawn on 
squared paper. Much discussion of the possibilities ensued. Some of 
the sketches produced are shown in Figure 11. Each group in turn then 
described their designs to the rest of the class. Before attempting to 
generalize their designs to cover frames for square photographs of any 
size they need further experience of some other special cases. The 
teacher then suggested: 

Task B Decide on a particular design and produce a whole range of 
picture frames, including the next smaller and the next larger ones. 
Figure 12 shows what Susan's group produced. 

OCIJO 
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Figure 12. 
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ODD 
0 0 
DOD Figure 13. 

Discussing their range of frames, Susan's group eventually added 
the smallest frame of all (Figure 13) saying: "This must be part of our 
collection. It's got four squares in the corners just like all the others. It 
doesn't have long bars in between though. They're only one long, but 
it's built the same as all the rest." They even paused to discuss the 
case of one four square at each corner with bars oflength zero in 
between! This was finally rejected because such a frame couldn't 
contain a picture. 

Task C Can you say how many cubes you'd need to make a frame to 
surround a square picture of any given size? Ursula's group offered 
this attempt at a generalization: "You must leave one square in the 
corner. On the left you have a rod the same size as the side of the 
picture in the centre. Then for the other three you just add one onto 
the size. You've got three ofthose." Once again the pattern Ursula's 
group was using to make each of their picture frames deflected them 
from answering the question in Task C. 

• 
Task D Write down how you'd find the number of cubes needed to 
make a frame for a square picture of any given size. Figure 14 shows 
what Ursula's group wrote. The teacher asked what they meant by 
"size of the picture" and they explained that it was whatever size the 
person happened to be thinking of. "If it was a 100 x 100 square photo 
then what would it be?" the teacher asked. The group explained: "One, 
for the corner; plus 100, for the size; plus (101) x 3 for size + 1 taken 
3 times; that's 404." 

The children's explanation suggested to the teacher the idea of a 
"thinks cloud," like those used in the comics, to represent "the size of 
the picture I'm thinking of." He offered the cloud idea to the whole 
class as a means of refining the rather wordy generalizations they 
were all producing. He drew a stick person with a "thinks bubble" 
coming from its head to illustrate his point. 

1 w... tk C<T\IroJI!. 

s"'f ~ ~ .., 
A dJ ~ rm:tr ~ ww1 ~ it 3 fi,...u 

Ti.- oil fk.u o..d.dM ~. Figure 14. 

255 James & Mason I Towards Recording 



1 
0 

1 Vro.- tk coJWA. 

$7-~~ 
AJJ..~oJ;.~~"f:d.t_ ·.t~~ ~ (0+1)~3 
T~ Ji~ o.J.kJ. ~- ~ (Ot1)~3 + 0 t 1 

Figure 15. 

Task E Try and shorten your statements using the notion of a "thinks 
cloud." Ursula's group added arrows to what they had already written 
pointing to the cloud notation (Figure 15). Having negotiated this 
shorthand with the class, it was a relatively short step for the teacher 
to introduce the more usual algebraic notation. "Whilst everyone in 
this class knows what we mean by 'cloud,"' he said, "the world's mathe­
maticians use a letter like 'n' to stand for 'the number we're thinking 
of."' Ursula's cloud shorthand was readily turned into Figure 16. The 
same process of recording and refining was carried out for the other 
groups (Figures 17 and 18). 

-\l4l. "'-"'-'-bctl' o' (J.>..~S v..u.~J. ~ Su..ttov. .... J 
0... ~~ ~~ ... ~ ..... ~ csS .... ~La. to\ '->:. : 

3("'~ 1) t "' + I Figure 16. 

The purpose of these examples has been to indicate the delicacy of 
the period leading up to adoption of a standard symbol system. Build­
ing on children's experience of doing specific tasks with apparatus, 
diagrams, or previously mastered symbols and depending on attempts 
to articulate to each other and to the teacher what they are doing, the 
act of moving towards recording is what gives substance to the other­
wise heartless symbols of mathematics. Crucial aspects in order for 
the struggle towards recording to be meaningful include: (i) Minimal · 
teacher intervention except to plant the seeds of helpfuUanguage pat­
terns and recording devices, (ii) Sufficient time for the children to get 
to grips with the task, (iii) A minimum of three distinct instances from 
which a generalization can be formed, (iv) Encouragement of children 
to do tasks and talk about what they are doing, (v) A neutral environ­
ment permitting children to make conjectures which may be modified, 
without the stigma of being riglit or wrong. 
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The activities of doing, talking, and recording are classroom acti­
vities which facilitate the corresponding shifts in psychological states 
described in Mason (1980), moving from 

Enactive to Iconic, that is from confident manipulation of specific 
instances to getting a sense of a common generalization; 

Iconic to Symbolic, that is articulating the sense of generalization 
as a sequence of conjectures which are modified until they crystal­
lize into an articulate and recorded statement which captures 
the notion. 

The transition from Symbolic to Enactive, that is from an abstract 
form which is constantly referred back to examples to recall its 
intention, to a confidently manipulable entity which can serve as 
a component in a new, higher order notion, 

requires practice to achieve mastery of the symbols. This is the true 
role of exercises in the mathematics classroom. 

Reference 
Mason, J. H. (1980). "When is a symbol symbolic?" The Learning of 

Mathematics, 1 (2 Nov.), 8-12. 

258 Visible Language XVI 3 1982 

Mental Images and Arithmetical Symbols 

L. Clark Lay 

Experiments by psychologists have led to the conclusion that images play an 
indispensable, if subordinate, role in thought as symbols. An analysis is begun 
of the mental images that are judged to be properly evoked by certain number 
symbols of arithmetic. A variety of graphical models are suggested for use in 
linking these symbols to the desired mental construct. Some of these models 
have been found to be advantageous and may prove to be critically essential in 
certain mathematical contexts. Their assets and liabilities are discussed, and 
suggestions are made for modifications of conventional curriculum practice. A 
rich field of investigation exists in the visual imagery that can be associated 
with elementary mathematics. Progress here holds promise of extending 
mathematical competence to a larger portion of society. 

The role of imag~ry in human thought has been studied by Piaget 
and Inhelder (1971), particularly as it relates to Piaget's well 
known genetic model of intellectual development. Their experi­
ments led these authors to the conclusion that images play an indi­
spensable, if subordinate, role in thought as symbols. In our paper 
an analysis is begun of the mental images that are judged to be prop­
erly evoked by certain symbols of arithmetic. The emphasis will be 
on graphical models that can be used to link such symbols to the 
desired mental construct. 

An experiment 
The reader is invited to join in the following experiment. Writing 
materials such as a pencil and paper should be available. In a moment 
you will be presented with a very familiar symbol. You are asked to 
respond to this symbol, in the following manner: 

Imagine yourself giving a verbal explanation of the meaning of this 
symbol to a person for whom it is not as yet familiar. Assume that the 
verbal discussion has not gone as well as you had hoped, and that it 
has occurred to you that a sketch or diagram of some sort might be 
helpful. You are asked to show your choice for this purpose. It is of 
particular interest that you record the first image that comes to your ~ 

mind when this symbol is presented. If, upon further reflection, you 

259 Lay I Images & Symbols 

Visible Language, XVI 3 (Summer 1982), pp. 259-274. 
Author's address: 160 Calumet Avenue, Aurora, IL 60506. 
0022-2224/821007-0259$02.00/0 «:> 1982 Visible Language, Box 1972 CMA, Cleveland, OH 44106. 



can think of other sketches you might use, we will be interested both 
in their variety and in the order of their coming to your mind. 

Ready? The symbol to which you are to respond is "5"; t he numeral 
for the number five. What image did 5 first evoke in your mind? 

As an alternate experiment, the word five can be given orally, 
although I have not found this to affect the results to a significant 
extent. For the past many years the author has tried this experiment 
with subjects of wide diversity of attainment in mathematics, ranging 
from primary school pupils to university graduate students. When the 
study is limited to the initial response, there has been a uniform 
consistency in the type of diagrams that are drawn. 

With very few exceptions the image that seems first to come to mind 
is that of an array of five separate but similar objects. These may be 

just five vertical lines, \ll \ \ , or these may be tied together as the 

tally .1-ttf, or there may be an arrangement in a characteristic 

pattern such as for a domino, -l< -l< -l< • Other subjects may show the 
-iC -tc 

fingers and thumb of one hand, or they may represent a collection of 
recognizable objects such as flowers, apples, or r abbits. 

It would seem that even for those who have acquired a consider­
able sophistication in mathematics the symbol5 is first perceived in 
its relation to counting as enumeration. But there is a considerable 
variety of ways to think of five. Some of these are not only advanta­
geous but may even be critically essential in certain mathematical 
contexts. And these situations need be no more complex than those 
commonly introduced in the elementary schools. A list of twelve such 
representations of the number five appears at the close of this paper. 
These will be discussed in turn. 

Numbers as counters 
The first five letters of the English a lphabet can be listed as; a,b,c,d,e. 
The acceptance of this collection ofletters as a single whole can be 
aided by enclosing t he given list by braces, { }. A temporary name, 
such as the letter S, can then be assigned to this collection, or set, 
ofletters. Let #( ) be an operator; a symbol which directs that the 
number of members in the set be determined by counting. We then 
say that the number five is thus represented as the cardinal number 
of a set. 

S = {a, b, c, d, e}; #(8) = 5 
During the mathematics education reforms of the 1960's this 

set representation of numbers was widely advocated, even for the 

260 Visible Language XVI 3 1982 

first introduction to number concepts. For various mathematical 
~nve~tigations, particularly those at an advanced level involving 
mfirute sets, the advantages of set language and symbolism had 
already become widely known and accepted. It was hoped that the 
use of these mental models might also be an enlightening exper­
ience for the young learner as well. 

But trials failed to support this innovation. Indeed after a time 
" t "b 1 ' ' se s ecame a most a synonym for "what's wrong with the new 
math?" In retrospect it can be seen that set representations were tools 
that were too delicate for the tasks assigned to them· there were too . . ' 
many rucetles to be observed in their use; so that confusion was often 
increased rather than decreased. 

As an example of the care that must be taken, note that one needs to 
differentiate between a list and a set. Thus the list a,a,a, is. different 
from the list a,a, and from the single listing, a. But, going back to 
the set S above, the notation used is defined as a roster notation: that 
appearing between the braces is a listing of names. But names used in 
this manner must be distinguishable; a repetition of the same name 
would introduce ambiguity. Hence {a,a,a}, {a,a}, and {a} must then 
all be accepted a~ representing the same set. 

'lb return to number as represented by an array of counters we can 
anticipate trouble with the number zero. For centuries people' must 
have thought: If there are no objects to be counted, what is the need of 
a number for this situation? Menninger (1969) found no trace of a 
written symbol for zero earlier than a Brahmi inscription of AD 870, 
although he states that the Sanskrit language had a name for this 
idea in sunya (empty) in the sixth century, and that the astronomer 
Ptolemy (about AD 150) used an abbreviation of a Greek word to 
indicate a missing place when writing fractions of Babylonian origin. 
Dantzig (1941) conjectured that zero was first conceived by an ancient 
scribe who wished to record an empty column on his counting board. 
Menninger puts it this way: "The zero is something that must be there 
to say that nothing is there." 

.If, as suggested, most persons associate numbers very strongly 
With the counting of objects, it is understandable why zero is often 
known only as nothing (no-thing). The set representation of numbers 
~n~roduces the empty set as a model for the number zero. But again, it 
1s~ust too.easy for th.e begin.~er to confuse the ~mptiness (n&;t'~.~gs) of 
th1s set w1th the set 1tself; smce the empty set 1s only a convenient 
mental fiction, but nevertheless must be considered to be something 
(some-thing). 
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Counting of changes 
The number zero has a much improved status when changes rather 
than objects are counted. Events can be considered as changes of state. 
Zero is then the number assigned to the original or initial state; before 
any of the changes to be counted have taken place. For such count­
ing, zero is no longer tied to an absence of things, but rather to a lack 
of change. 

In Figure 1 (adapted from Lay 1977) contrast is shown between 
the counting of objects (above the line), and the counting of changes 
(below the line). With the latter, five is now represented by a counting 
sequence. The arcs between the numerals for this counting sequence are 
meant to suggest changes of any kind that take place. A number is not 
assigned to the change while it is happening; the count is recorded only 
after the change is complete. 

Counting objects 

Counting changes 
of state 

0 1 2 3 4 5 

* * * * * 

Figure 1. 

There is a wealth of familiar activities and experiences which 
provide reason for counting changes of state. A simple example would 
be the counting of changes of position, as by steps. Zero then desig­
nates the starting position, the number 1 is recorded after the first 
step, 2 after the second, and so on. These further observations can be 
made for the comparison between the counting of objects (above the 
line) and the counting of changes (below the line). 

zero 

one 

+ 1, unit increase 

-1, unit decrease 

none, no object 

initial state, origin 

object 

change, transformation 

join one object 

advance to the next state 

remove one object 

return to the previous state 
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The concept of a counting sequence was used by Dedekind (1888) 
and Peano (1889) in their developments of a logical foundation for the 
principles of arithmetic. Such sequences are based on very funda­
mental intuitions. The questions to be answered are: "What comes 
first?" and then repeatedly, "What comes next?" A child is beginning 
to grasp these ideas when he or she can repeat, "Mary had a litt le 
lamb." Figure 2 suggests some of the significant reorientation that 
must take place when the imagery for numbers is to be shifted from 
counting to measuring. 

Figure 2. From counting to measuring 

* * * * * 
1 2 3 4 5 

Counters 
Counting 
How Many? 
Multitude 
Separate 
Discrete 
Natural Numbet s 

I I 
0 1 2 3 4 5 
Scale 
Measuring 
How Much? 
Magnitude 
Connected 
Continuous 
Non-negative Real Numbers 

A small proportion of the persons who have participated in the 
thought experiment for numbers, as previously discussed, have 
sketched a scale for the number 5, similar to that in Figure 2. But 
most have not thought of doing this, even when encouraged to do so 
by leading questions. 

One disturbing fact has come out ofverbal discussions of such 
simple scales. There are persons who believe that Figure 3 is really 
a model for number six, rather than for five! 

Figure 3. 

Apparently they are so committed to the counting of objects that they 
r~act by counting the scale division points, rather than counting the 
hne segments, or in thinking of the measure of the length of the entire 
segment. School authoritie~ecognize the widespread avoidance by 
pupils of all the physical sciences, because of the reputed difficulty of 
these subjects. Much of the data for these sciences comes from mea­
surements of quantities which the mind conceives as being cont in­
uous; such as mass, time, and measurements in space. What is the 
barrier to success for beginning students in these sciences? Can 
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it be partially attributed to the pupils' lack of appropriate mental 
images for the symbols they encounter? 

Models for rational numbers 
The first extension of the number system, beyond that for the count­
ing numbers, has traditionally been to the non-negative rationals, 
commonly known as fractions. Let us repeat the symbol response test, 
this time for the fraction, two-thirds. 

What type of sketch or diagram first comes to your mind as being 
useful to communicate the meaning of%? 

It can be anticipated that nearly all people will first draw a unit of 
some kind; it's "oneness" being suggested by its appearance of being 
"all there." Examples might be a circle, or a pie, or possibly a square 
figure. This is then divided in three parts of equal size, and the atten­
tion is directed to two of these subdivisions, by some device such as 
shading. For a verbal description we may say that two-thirds has thus 
been shown as representing two of the three equal parts of one (one 
unit, or all of something). But the fraction o/a also represents one of the 
three equal parts oftwo, although a figure to illustrate this interpre­
tation is very rarely given by subjects for our experiment. If the two is 
imagined as referring to two separate objects, this figure has a forbid­
ding aspect if one is contemplating dividing it into three equal parts. 
This should be compared with the ease of thinking about a length (with 
a measure of two units), and sub-dividing this into 3 parts of the 
same length. 

0 2 

00 3 Figure 4. 0 2 

The key strategy here is to take advantage of the arbitrary length 
that can be assigned to the measure of one unit. We begin with a line 
segment with designated points that are equally spaced. The zero and 
1 of the scale are then located so that this assumed unit length can 
readily be subdivided into the prerequisite number of parts. With this 
done, then any positive integral multiple of this chosen unit length 
can be easily divided into the same number of integral parts. Thus in 
Figure 4 the number 1 was located to show the unit length divided in 
three parts; this assured that the length with measure 2 could also be 
so divided. There is a striking difference in the conceptual difficulty of 
thinking about dividing a two foot length of string into three equal 
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lengths, as compared to thinking about dividing two apples into three 
equal portions. If this example with o/a does not seem sufficiently im­
pressive, one need only try contrasting the discrete and continuous 
models using slightly larger numbers, such as o/1. An important peda­
gogical advantage can be noted for the models using scales. A variety 
of illustrative examples are easily constructed by pupils, who are the 
ones who need the practice. But for the models for which the units are 
separated, both text and teachers are limited to the simplest of cases. 

When the symbol 1/y is interpreted as x of the y equal parts of one, 
this concept is commonly termed the parts-of-a-whole meaning. When 
1/y is thought of as the measure of one of they equal parts of x units, 
we are appealing to the quotient meaning for 1/y. Of these two inter­
pretations, the quotient meaning appears much more frequently in 
applications but seems to be far less familiar to most adults. My hypoth­
esis is that this handicap is strongly associated with the lack of the 
mental imagery that visualizes numbers as measures, such as their 
use on a linear scale. 

The symbol 'i/y has still another interpretation, and its application 
extends to an even broader field than the two meanings already men­
tioned: The symb.ol 'i/y is also used to represent the ratio ,comparison of 
x toy. In part A of the Figure 5 we have a model for thinking about 
how 2 compares to 3. If a difference comparison is used (by subtraction), 
we say that 2 is 1less than 3 . But with a ratio comparison (by division), 
we say that 2 is o/a of 3. 

This same ratio comparison of2 to 3, or of%, is also shown by dia­
grams Band C. Of the three, diagram Cis considerably more flexible 
in its application. This flexibility arises from this distinctive property 
of ratio comparison: The ratio comparison of two magnitudes is inde­
pendent of the scale used to measure them. Not only is C of Figure 5 
a representation for the ratio meaning of o/a; it serves equally well for 
2•00o/a,ooo and for ·02/oa, as well as V1 112 and Lo/2.4. An older notation for the 
ratio of 2 to 3 was 2:3, but there is increasing use of the same form 
as for fractions and quotients. 

Scales for the measurement of length need not be confined to 
straight line segments. They are also used with curved figures, in 
particular with arcs of circles. Many phenomena in life are cyclic in 
nature; the same succession of events is repeated over and over again. 

<0 

A. B. c. ~Figure 5. 

* * 

* * * 
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A B c Figure 6. 

Revolutions Degrees Radians 

This is strongly suggestive of traveling around and around in a cir­
cular path. 

For a rapidly turning wheel or axle, it is convenient to assign the 
number one to a single complete turn or revolution. Let one revolution 
be divided into 360 equal parts, or degrees, as the ancient civilizations 
have taught us. Then many fractional parts of a turn are now mea­
sured with whole numbers: 1/2 turn is 180 degrees, V3 turn is 120 
degrees, V4 turn is 90 degrees, etc. 

Another way to assign measure to circular arcs is shown in C of 
Figure 6. In a certain sense we permit the circle to decide its own mea­
su~e. Th~ size of a ~ircle is f~lly determined by the choice of the length 
of Its radms. Imagme a flexible tape on which the distance from zero 
to one is the same as the length of the radius of the circle that is the 
di~tance from the center of the circle to the circle itself. Begin at 'some 
pomt zero and wr~p the tape around the circle. Then as in C of Fig­
ure 6 we have a picture of 5 as given in radian measure. This mental 
~mage of numbers is invaluable for many applications of mathematics 
m the field of calculus. This positive number 5 is measured in a counter­
clockwise direction; negative numbers are measured clockwise. 

The association of numbers with ratios is very ancient, going back 
at least as far as the Greeks. Sir Isaac Newton (1769) considered the 
idea of ratio to be so basic that he used it in the definition of number 
"By number we understand, not so much a multitude of unities as the 
abstracted ratio of any quantity to another of the same kind which 
we take for unity." ' 

This w_ay of thinking about numbers was given a concrete model by 
the Belgian educator, G. Cuisenaire, who introduced the colored rods 
which now bear his name. In Figure 7 if the white rod is assumed to 
have a measure of one, then 5 will be the measure of the yellow rod. 
The rods are unmarked, being identified only by color. This encour­
ages a wide generalization: If any rod is assigned any positive number, 
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white 

red 

green 

purple 

yellow Figure 7. 

then the ratio relations fix the unique number to assign to each of the 
other rods. For example, the purple rod is always twice as long as the 
red. If a number is assigned to either of these rods, then a number is 
fixed to assign to the other. Because of the three interpretations that 
can be given to :YY, these rods can be used to exemplify many properties 
of fractions and quotients, as well as ratios. Space does not allow dis­
cussion of their limitations, although the lack of a zero rod is evident. 

Some non-linear models 
The Cuisenaire i.'ods vary in only one dimension of space, that of 
length. For two dimensions, with width or height as well as length, 
the square of unit sides and unit area is the fundamental unit. This is 
a difficult step for the learner in mathematics. Just a glance at Fig­
ure 8 is enough to reveal serious shocks to our intuitions. Certainly it 
is hardly evident that a square of area 4 is exactly twice the size of a 
square of area 2. Nor is it apparent that an area of2 square units com­
bined with an area of 3 square units should be equivalent to an area 
of 5 square units. A considerable amount and variety of "hands on" 
experience is a prerequisite before such relations can be made reason­
able to our minds. Again, the difficulties with the ratios of areas are 
intensified when the ratios of volumes are considered. Here our intui­
tions are so strained that some might want to question the accuracy 
of the drawings for Figure 9. 

D oDD D 
1 2 3 4 5 

Figure 8. 
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1 2 3 4 5 
Figure9. 

Numbers as points 
The symbols we call fractions- either the common variety such as 
% or those called decimal fractions such as . 75-are the numerals for 
the positive rational numbers. These numbers present conceptual dif­
ficulties far greater than those that arise when only counting numbers 
are considered. One of these mind stretchers is the loss of "nextness," 
which was an essential feature of the counting sequence in Figure 1. 

What is the next larger fraction after %? The answer is this: Such a 
number does not exist; it cannot even be imagined. True, % is slightly 
larger, but 17/24 is larger than% or uv24, yet 17/24 is also smaller than%, 
or lo/24. In fact, if x andy are two unequal rational numbers there is an 
infinite list of numbers that lie between them. For such a reason the 
system of rational numbers is said to be dense. 

How can the mind be expected to visualize a dense set of num-
bers? The best answer we have is to adopt still another way of thinking 
about numbers, as suggested in Figure 10. On a line, extended in ei­
ther direction as necessary, two distinct points are chosen. The number 
zero is assigned to one of these points, and the number one is assigned 
to the other. The line segment whose endpoints are zero and one then 
becomes the unit oflength. The methods of geometry allow us to locate 
other points by adding, subtracting, multiplying, and dividing dupli­
cates of this unit segment. Points determined in this way are rational 
points on the number line; each is associated with a unique rational 
number. The number five is now a point on this line. 

Such a mental construct provides a model for a dense set of numbers, 
such as all the rational numbers between 1 and 4; we think of them as 
points on the line segment whose endpoints are 1 and 4. The points of 
a line do form a dense set. Between any two distinct points on a line 
there is another point, and even an infinite number of points. We have 
said that with each rational number there can be associated a unique 

0 2 3 4 5 

Figure 10. 
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point. But this does not mean that to every point can be assigned a 
rational number. Since Greek times it has been known that there is a 
number between 1 and 2, called a square root of 2 and written as Vz, 
which is needed for measurement but that cannot be a rational num­
ber. Such numbers, and the points matched to them, are said to be 
irrational. Rational points are dense everywhere along the line, yet 
modern research has concluded that the set of points missed by the 
rationals- the irrationals- is also dense and in some sense there are 
even more of them than there are of the rationals. Thus we see how 
our search for a mental image for numbers has led to some very deep 
and imponderable properties. When we grant that for each counting 
number there is always a larger number, we are led to infinity in the 
large. When we reflect on the number line, we are confronted with 
infinity in the small. 

For the counting sequence in Figure 1 every number has a unique 
successor. And every number, except zero, has a unique predecessor. If 
we allow every number to have a unique predecessor, the result is the 
sequence of integers. The notation for the integers is symmetrical, 
with zero as the center of symmetry. With each counting number dif­
ferent from zero there is paired its opposite; that is named by the same 
numeral, but by lflso including a minus sign as a tag to distinguish it 
from its partner. 

The counting numbers provide answers for "How many?," and the 
rational numbers do this for "How much?" The extension to the nega­
tive numbers is useful for "Where?" 

In Figure 11 the sequence of integers is used to extend the number­
ing of points for Figure 10; thus completing a figure that is called the 
real number line. 

- 5 - 4 -5 - 6 -1 0 2 3 4 5 

Figure 11. 

Vectors for Numbers and Operators 
There is still another visual image that we can use with great ad­
vantage for our example, the number 5. For each point on the real 
number line, except zero, we~an associate a directed line segment, or 
vector. This vector will have its initial point at zero and its terminal 
point at the number by which it is named. The arrowhead at the ter­
minal point gives the vector a sense of direction which is lacking for 
an undirected line segment. If the point zero is accepted as a limiting 
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or degenerate vector, the vector model for each real number is then 
complete. 

0 2 J 4 5 

Figure 12. The vector should lie along the line, but is offset here for clarity. 

Before presenting our final representation of number, we mention.a 
caution to be learned from Skemp (1971) in his instructive discusswn 
of mathematical symbolism and imagery. A visual symbol can convey 
a distinctive and even a dramatic message, but it can also be imprecise 
in this communication. 'l\vo persons looking at a mathematical sym­
bolism or a visual model of it do not necessarily "see" the same thing. 
A simple and yet very fundamental example can be given. 

There are several ways to think about even such a simple form as 
3 + 2. We have first been taught to think of this in terms of a binary 
operation (an operation on two numbers); which can be emphasized by 
underlining, .3. + .2. Three is a first number and two is a second. The 
plus sign links these to form the composite symbol, 3 + 2. The arith­
metic student may be encouraged to think of the plus sign as suggest­
ing an operation (addition) yet to be done, to get the number 5 which 
will be ca lled the sum of 3 and 2. Yet the algebra student must accept 
this addition as already accomplished by the writing of 3 + 2. This is 
a result of accepting 3 + 2 = 5 as a true statement because 3 + 2 and 
5 are names for the same number. The change from 3 + 2 to 5 must 
be recognized as a change of form but not a change in amount. It is 
unfortunate that elementary texts commonly gloss over t his conflict 
of meanings. 

But the end is not yet for 3 + 2. This time we underline to suggest a 
unary operation meaning, .3. + 2. Three is still a first number, but the 
composite symbol + 2 now represents not a number, but rather a 
change. We think of+ 2 as an operator, representin~ a_n .increase o~ 2. 
The number 3 is the operand. When the operator + 2 ISJOmed, by wnt­
ing it at the right, the result is the transform, 3 + 2, which represents 
a second number. 

Unary operations have possibilities for int roducing a dynamic 
point of view into arithmetic which is yet to be recognized ~Y texts 
and teachers. Curiously enough, some of the present practices already 
seem to follow the unary operation concept. For example, in present­
ing 3 + 2 = 5, a textbook picture may show a static model for the 

270 Visible Language XVI 3 1982 

number 3, such as three children standing in a group. But many such 
illustrations include a dynamic model, not for 2 but for + 2, as shown 
by two children at a distance but running to join the others. This leaves 
the number 3 + 2, or 5, to be imagined as the state after the two 
groups have become one. 

Even the vertical display for suggested addition computations has a 
slight bias toward a unary operation. 

3 
+ 2 , suggests a 3 D, a unary operation 

3 
+ 2, would be a better binary sumbolism 

If we return now to Figure 12, a fortunate circumstance can be ob­
served. The vector model for the positive number, 5, can serve equally 
well as a mental image for + 5, that is, for an increase of 5. For a de­
crease of 5, as indicated by the operator - 5, the vector would have 
the same length as for + 5, but with the arrowhead moved to the other 
end. In summary, the length of the vector can give the amount of the 
change, while the two senses of direction along the line can differenti­
ate between thE! two opposite kinds of change. 

However, the single vector shown in Figure 12 is too limited in its 
portrayal of an increase of 5. The vector shown there is also the position 
vector for the number 5. As such, it is a bound vector, with its initial 
point necessarily at the origin. 

But we want to think of increases as beginning at any chosen num­
ber (or point on the line). For this we need a free vector , that is, a vector 
free to move along a line but without changing its length or sense. We 
therefore enlarge our vector concept to include an equivalence class of 
vectors. ('I\vo vectors are equivalent if they agree in length, direction, 
and sense.) As long as t hese conditions are met the vect or remains 
equivalent even though it is translated to a new position. 

The vectors for Figure 13 all represent increases of 5, even though 
they have been shifted to t he left or to the right. Again we are to think 
of their acting along the line, even though they are here moved down 
for clarity. 

-2 -1 0 1 2 <0 J 4 5 6 7 

Figure 13. 
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As given here, our final interpretation for the real numbers will be 
to identify each with an equivalence class of vectors. For our example, 
the number 5, these will be the vectors oflength 5 that are directed in 
a positive sense (as from zero to one). Space does not allow a demon­
stration of how this correspondence between numbers and vectors 
provides a foundation for the study of signed numbers. 

Also omitted is the necessarily extensive discussion ofthe various 
binary and unary operations on numbers. We would find that there 
are distinctive advantages and disadvantages for each of these varied 
visual models as we consider such operations as addition, subtraction, 
multiplication, and division. Our purpose has been limited to sugges­
tion of the rich field of investigation that exists in the visual imagery 
that can be associated with numbers. 

Our society presents an ever increasing demand that mathematical 
competence be extended to a larger portion of its members. To make 
this possible we need to seek a better understanding (a better mental 
picture?) of number and its uses, and this properly begins with a study 
of its simplest ideas. 
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Representation of number 

Basic Numeral : 5 

Array of Counters: • • • • • 
1 2 3 4 5 

I cardinal Number of a Set: 

s = (a . b c . d • e} # (S} 5 

Sequence; in consecutive order: 

0 1 2 3 4 5 

Scale; for Length Measure: 

0 1 2 3 4 5 

Scale; for Arc J-l.easure: 

0 
2 1 

0,1,·· · 00,360,· 3co 
4 5 

Revolutions Degrees Radians 

Ratio of Lengths 

1 

2 

3 

4 

5 
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Ratio of Areas 

D D oDD 
1 

Ratio of Volumes 

1 

A point on a line: 

0 

A Bound vector 

0 

2 

2 

1 

1 

An Equivalence Class of Vectors: 

0 1 

3 4 

3 4 

5 

5 

An equival ence class of vectors can also correspond to 

an increase of n, as represented by the operator + n . 
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5 

5 

Language Acquisition 
through Mathematical Symbolism 

Francis Lowenthal 

We noticed that the use of a non-verbal formalism can favour cognitive 
development (in the frame of the elementary school) in problem children as 
well as in normal children. An example is given to show how a formalism 
inspired by mathematics can be used to aid the development of the verbal 
language of 8- to 9-year-olds. We will then analyze the results and try to 
discover the cause of success we observed. 

First we must specify which symbolic systems and which mathe­
matical formalisms to use. In a previous paper (1980a) we stated, 
"We think that the main factor of cognitive development is manipula­
tion of representations." In another paper (1980b) we claimed that any 
representation s~stem which satisfies the six following criteria can be 
used: the system must be non-ambiguous, simple and easy to handle, non­
verbal (to avoid conflicts with the developing verbal language); it must 
also be supple enough to enable the child to become conscious of what 
he knows but cannot verbally express; it seems essential that such a 
system should be suggestive of a logic and could be introduced and used 
in the frame of games (to enable us to use it easily with young children). 

We wanted each of our systems to be suggestive of a logic; this is 
why we decided to choose representation systems used in mathematics. 
This requirement enabled us to represent our symbolic system in 
terms of a game. The rules of a game are explained and the children 
must collectively build a representation. This is the first stage of their 
work: the synthesis. They must then modify the representation and 
only respect technical constraints while doing so. They then reach the 
last stage: the analysis of the new representation and the collective 
discovery of the rules of the new game. Similar exercises can be 
invented for language acquisition. 

What follows is a report of an actual lesson during whic we 
asked the children "to tell a coherent story corresponding to a~given 
representation." We will thus describe the adventures of a class of 
normal 8- to 9-year olds. The representation system we chose is that 
which is used in the new math (Papy 1968). Objects are represented by 
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dots and relationships between objects by multicoloured arrows. Each 
dot represents exactly one object (which can have several names) and 
each colour represents exactly one relationship; 2 dots are associated 
to 2 different objects and 2 colours to 2 differing relationships. The 
children suggested the starting diagram (Figure 1). They decided to 
use only two kinds of "arrow-relationships": red and green ones. (For 
technical reasons we will represent red by a discontinuous line and 
green by a continuous line.) 

First stage 
Ronald produces the diagram shown in Figure 1, but does not say 
anything. Rudy asks immediately: "Does one split Magali into two?" 
but Ronald does not answer. Fabrice notices: "The dot below has no 
name," and Rudy tries to explain: "The green arrow says, 'to go to 
the park,' so Magali goes to Nicolas' and Nicolas goes and sleeps in 
the park." --

Mag ali Nicolas 

-~--"To go and sleep" (red) 

-~).---"To go to the park" (green) Figure 1. 

Second stage 
Isabelle suggests calling the third dot "Marie" and the whole class 
accepts this. Rudy, who is still thinking in terms of games, says: "One 
game, it .will be the park; the other one, it wi11 be "to sleep." We should 
add more arrows." (He probably assumes that there are two "games" 
for Magali). 

Fabrice asks: "Does Magali go to the park at Marie's?" He adds: 
"Magali goes and sleeps at Nicolas'. Nicolas goes and sleeps at 
Marie's. Magali goes to the park at Marie's." Pascal corrects him: 
" . .. with Marie." 

The teacher interferes then and asks: "Fabrice made a mistake. 
Why?" Isabelle suggests: "Magali goes to the park at Marie's." "At 
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Marie's?" asks the teacher. The children do not seem to find improper 
the word "at." The teacher insists then upon the relationship "to go 
and sleep." Catherine re-reads the picture: "Magali goes and sleeps 
at Nicolas'." Fabrice suggests: "Magali goes and sleeps Nicolas" but 
Catherine proposes: "'Magali, go and sleep!' says Nicolas"; and Pascal: 
"Magali goes and sleeps with Nicolas." 

'"At' or 'with"' asks the teacher, while Rudy wonders: "May we 
change the arrows?" Fabrice wants to add a little word to "to go and 
sleep" and obtains: "to go and sleep at[ . . . 's house]." The class thus 
obtains a text which is read by Silvie: "Magali goes and sleeps at 
Nicolas' . Nicolas goes and sleeps at Marie's." 

"The green arrow annoys me," announces Rudy. Bertrand notices: 
"It gives: Magali goes to the park Marie." "To go to the park of Marie" 
says Rudy, but this is rejected by the rest of the class, while Catherine 
suggests adding "with" at the dot called "Marie." The text becomes 
then: "Magali goes and sleeps at Nicolas'. Nicolas goes and sleeps at 
Marie's. Magali goes to the park with Marie." 

Third stage 
Pascal notices thjlt "IfMagali goes and sleeps, she cannot go into the 
park." Fabrice puts both actions in a time perspective: "Magali goes 
and sleeps at Nicolas'. 'Ibmorrow Nicolas will go and sleep at Marie's. 
The day after tomorrow Magali will go to the park with Marie." 

The teacher, thinking of the symmetry implied by the word 
"with," asks: "There is a problem in this story. Which one?" He has the 
impression that the pupils feel that there is a qualitative difference 
between the two actions of Magali, but that they cannot express 
verbally and correctly the idea. 

"IfMagali goes to the park with Marie ... " starts the teacher, and 
Fabrice continues: "Then Marie goes to the park with Magali." The 
pupils then suggest adding an arrow and obtain the diagram shown 
in Figure 2. Catherine notices: "Both are going," and the teacher 
adds: "'Ib go somewhere with somebody; the persons are together." 

-~ -- ---.... J Nicolas Mag ali 

Marie 
Figure 2. 
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Sylvie finally tells the complete story: "Magali goes and sleeps at 
Nicolas'. Nicolas goes and sleeps at Marie's. Magali goes to the park 
with Marie. Marie goes to the park with Magali." The whole class 
gives these data the shape of a story: "Magali goes and sleeps at 
Nicolas'. The next day Nicolas will go and sleep at Marie's. The day 
after tomorrow, Magali and Marie will go together to the park." 
Catherine uses the time variable to create another story, using the 
same basic data: "Yesterday Magali went and slept at Nicolas'. 
Yesterday Nicolas went and slept at Marie's. To-day, Magali and 
Marie will go to the park together." 

During this lesson the children successfully and graphically 
produced a situation. Starting from this situation, they created a 
story. Their teacher can now use the story created by the children 
themselves to introduce, in the frame of the language course, exer­
cises about conjugation, about personal or relative pronouns, or 
even subordinates. 

Analysis of this example 
At the first stage the children create a simple situation: there are ob­
jects and relationships. We are at the object-language level, not at the 
metalanguage level. There is not really a story. At the second stage 
we notice that the diagram suggests (to the children) complements 
which are required from a logical point of view (naming of all the dots, 
correct statement of all the relationships). There are already sentences, 
but not yet a story. 

During the third stage the children correct apparent contradictions, 
thanks to the explicit introduction of variables which remain implicit 
in an ordinary conversation. This concerns the properties of certain 
words (e. g., symmetry for "with") but mainly the introduction of the 
time variable. The children are, nearly constantly, the initiators of the 
action, not the teacher. The children choose freely the conventions 
they want to use. The classroom dynamics plays an important role: 
one child proposes an idea, the whole class criticizes it, and after 
discussion all accept it-or reject it. 

Discussion 
One diagram is used as starter. During their discussion the children 
modify many things. They first try to adapt the story to the diagram, 
then the diagram to the new version of the story. It seems important 
to notice this back-and-forth process during which, in this case, time is 
introduced. More generally comments about the representation and 
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assessments of the value of one diagram compared to another appear 
in the children's speech. 

Object-language is that part oflanguage concerning descriptions 
of objects, or relations between actual objects, while metalanguage is 
that part oflanguage concerning what is said about these descriptions 
or relations. "My pencil is broken" belongs to object-language, but 
"'My pencil is broken' is a correct sentence" belongs to metalanguage. 
When we use the technique described in this paper, we pass easily, 
especially in the way time is introduced, to the level of metalanguage 
and the children eventually create a coherent story. We think that our 
symbolic representations are useful, mostly because they enable the 
children to distinguish clearly between object-language (associated to 
the representations) and metalanguage (what is said about the repre­
sentations) . We think that this concrete distinction between object­
language and metalanguage might be the factor which favours the 
children's cognitive development. A young child is able to use repre­
sentations, but not always to state or to notice that two different 
representations can be used for the same object, for the same story. 
This is a problem of non-identity or non-conservation. But this is no 
longer true if we ask the child to compare concrete representations 
and to say what 1te notices while doing so: the child will then rapidly 
learn what Piaget said this young child cannot learn. 

Remarks 
The representation system we used enabled the children to create a 
diagram. This diagram was only used as starter for the narrative 
process. The story the children created is wider than the diagram's 
frame. Moreover, a lthough it is true that the construction of the story 
is based upon the diagram (the basic elements of the story are sug­
gested by the diagram), it is nevertheless wrong to believe that the 
diagram is used to communicate a complete message. There are con­
ventions established by the pupils, many things are implicit and are 
not mentioned; other problems are never solved. It is true that Magali 
goes and sleep at and with Nicolas (story told by Pascal and Sylvie)? Or 
does Nicolas go away and leave Magali alone (story told by Catherine)? 

Mistakes to avoid 
The pupils should build the ir story by themselves; the teac er 
should only guide them when needed, as little as possible. Our tech­
nique should certainly not be used too formally; it would block the 
pupils' activity. We must accept, for instance, the quasi-identifica­
tion of"Nicolas" and "at Nicolas' house," accept that the pupils 
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change the name of the third dot and call it "with Marie" instead of 
keeping "Marie," and explicitly add the "with" to the green rela­
tionship. We may never forget that it is difficult to tell a story corre­
sponding to the starting diagram. The teacher must be supple and let 
the children modify the diagram when they want to do it and exactly 
as they want to do it. They must have the possibility to adapt the 
diagram to the story they wish to tell, and the story to the diagram 
they want to keep, in such a way that they slowly reach a solution 
which satisfies them. If they succeed in building a coherent story­
but a story which does not even look like the starter-the teacher 
must be able to accept it: the terminology, the convention, the game's 
control belong to the children. 

One must , at all cost, avoid dogmatic use of the technique, for dog­
matism kills the children's freedom of expression. We must use repre­
sentation systems which, thanks to inner technical constraints, sug­
gest to the child the use of a logic which the teacher has hidden in it. 

Conclusion 
A non-verbal auxiliary formalism can serve as guide to the child's 
thought. If this formalism, or representation system, is used in a 
non-dogmatic way, it enables the children to build a coherent story 
through successive adaptations that they suggest. This story can 
be graphically represented by the proposed formalism. In this case 
one should use the definitions formulated by some children and ac­
cepted by the whole class. Such a formalism is also useful because 
the teacher, when choosing the symbols and imposing upon them 
the technical constraints, can hide a logic in the system. The teacher 
can thus choose a logic which the children will use nearly sponta­
neously. Moreover, such a formalism enables the teacher to visualize 
the difference between object-language and metalanguage. 
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Communicating Mathematics: 
Surface Structures and Deep Structures 

Richard R. Skemp 

A distinction is made between the surface structures (syntax) of mathematical 
symbol-systems and the deep structures (semantics) of mathematical schemas. 
The meaning of a mathematical communication lies in the deep structures­
the mathematical ideas themselves, and their relationships. But this meaning 
can only be transmitted and received indirectly, via the surface structures; cor­
respondence between deep and surface structures is only partial. Some result­
ing problems of communicating mathematics are discussed, and some remedies 
suggested. 

The power of mathematics in enabling us to understand, predict, and 
sometimes to control events in the physical world lies in its conceptual 
structures- in.everyday language, its organised networks of ideas. 
These ideas are purely mental objects: invisible, inaudible, and not 
easily accessible even to their possessor. Before we can communicate 
them, ideas must become attached to symbols. These have a dual sta­
tus. Symbols are mental objects, about which and with which we can 
think. But they can also be physical objects-marks on paper, sounds 
-which can be seen or heard. These serve both as labels and as han­
dles for communicating the concepts with which they are associated. 
Symbols are an interface between the inner world of our thoughts, 
and the outer, physical world. 

These symbols do not exist in isolation from each other. They have 
an organisation of their own, by virtue of which they become more 
than a set of separate symbols. They form a symbol system. A symbol 
system consists of 

a set of symbols corresponding to a set of concepts 

together with 
a set of relations corresponding to a set of relations 
between the symbols 0 between t e concepts. 

What we are trying to communicate are the conceptual structures. 
How we communicate these, or try to, is by writing or speaking sym­
bols. The first are what is most important. These form the deep struc­
tures of mathematics. But only the second can be transmitted and 
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received. These form the surface structures. Even within our minds 
the surface structures are much more accessible, as the term implies. 
And to other people they are the only ones which are accessible at all. 
But the surface structures and the deep structures do not necessarily 
correspond, and this causes problems. 

Here are some examples to illustrate the differences between a sur­
face structure and a deep structure. 

I feel like a wet rag 
-...._ Same surface structure, 
___.,.--- different deep structure 

I feel like a glass of beer~ 
Same surface structure, 

~ same deep structure 
I feel like a cup of tea 

~ Different surface structure, 
~ same deep structure 

Shall I put the kettle on? 

What has this to do with mathematics? At a surface level wet rags 
and cups of tea would seem to have little connection with mathema­
tics. But at a deeper level, this distinction between surface structures 
and deep structures, and the relations between them, is of great im­
portance when we start to think about the problems of communicating 
mathematics. 

For convenience let us shorten these terms to S for surface struc­
ture, D for deep structure. S is the level at which we write, talk, and 
even do some of our thinking. The trouble is that the structure of S may 
or may not correspond well with the structure of D. And to the extent 
that it does not, S is inhibiting D as well as supporting it. 

Let us look at some mathematical examples. We remember that a 
symbol system consists of: 
(i) a set of symbols, e.g. 1 2 3 

1/2 3/4 

a b c 
(ii) one or more relations on those symbols, e.g. order on paper 

(left/right, below/above); order in time, as spoken. 

But since the essential nature of a symbol is that it represents 
something else-in this case a mathematical concept-we must add 

(iii) such that these relations between the symbols represent, in some 
way, relations between the concepts. 
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So we must now examine what ways these are, in mathematics. Here 
is a simple example. (Note that 'numeral' refers to a symbol, 'number' 
refers to a mathematical concept.) 

Symbols 
(i) 1 2 3 ... (numerals in 

this order) 

Relations between symbols 
(ii) is to the left of (on paper) 

before in time (spoken) 

Concepts 
the natural numbers 

Relations between concepts 
is less than 

This is a very good correspondence. It is of a kind which 
mathematicians call an isomorphism. Place value provides another 
well known example of a symbol system. 

Symbols 
(i) 1 2 3 ... (numerals) 

Relations between symbols 
(ii) numeral1 is one place 

left of numeral2• 

Concepts 
natural numbers 

Relations between concepts 
number1 is ten times 
number2• 

By itself thfs is also a very clear correspondence. But taken with the 
earlier example, we find that we now have the same relationship 
between symbols, is immediately to the left of, symbolising two 
different relations between the corresponding concepts: is one less 
than and is ten times greater than. We might take care of this at the 
cost of changing the symbols, or introducing new ones; e.g., commas 
between numerals in the first example. But what about these? 

23 2112 2a 
These can all occur in the same mathematical utterance. And this is 
not just carelessness in choice of symbol systems; it is inescapable, 
because the available relations on paper or in speech are quite few: 
left/right, up/down, two dimensional arrays (e.g., matrices); big and 
small (e.g., 7, r) What we can devise for the surface structure of our 
symbol system is inevitably much more limited than the enormous 
number and variety of relations between the mathematical concepts, 
which we are trying to represent by the symbol system. 

Looking more closely at place value, we find in it further subtleties. 
Consider symbol: 5 7 2. Kt the S level we have three numerals in a 
simple order relationship. But at the D level it represents '""" 
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(i) three numbers, corresponding to 5 
t 

7 
t 

2 
t 

(ii) three powers often: 102 101 10° 
These correspond to the three locations of the numerals, in order 
from right to left. 

(iii) three operations of multiplication: the number 5 multiplied by the 
number 102 

( = 100), the number 7 multiplied by the number 101 

( = 10), the number 2 multiplied by the number 10° ( = 1). 
(iv) addition of these three products (5 hundreds, seven tens, two). 
Of these four at D level, only the first is explicitly represented at S 
level by the numeral 572. The second is implied by the spatial 
relationships, not by any visible mark on the paper. And the third and 
fourth have no symbolic counterpart at all: they have to be deduced 
from the fact that the numeral has more than one digit. 

Once one begins this kind of analysis, it becomes evident there is a 
huge and almost unexplored field- enough for several doctoral 
theses. For our present purposes, it is enough if we can agree that the 
surface structure (of the symbol system) and the deep structure (of the 
mathematical concepts) can at best correspond reasonably well, in 
limited areas, and for the most part correspond rather badly. 

'lb help our thinking further in this difficult area, I would like to 
introduce two further ideas. The first comes from my new model of 
intelligence (Skemp 1979) and does not require any other parts of 
the theory. It is based on the well-known phenomenon of resonance. 
"The starting point is to suppose that conceptualised memories are 
stored within tuned structures, which, when caused to vibrate, give 
rise to complex wave patterns .... Sensory input which matches one 
of these wave patterns resonates with the corresponding tuned 
structure, or possibly several structures together, and thereby sets 
up the particular wave pattern of a certain concept." (page 134) 

It is convenient at this stage to introduce the term schema, which 
is simply a shorter way of referring to a conceptual structure. A 
schema (i.e., a conceptual structure stored in memory) thus 
corresponds in this model to a particular tuned structure. We all 
have many of these tuned structures corresponding to our many 
available schemas, and sensory input is interpreted in terms of 
whichever one of these resonates with what is coming in. What is 
more, different structures may be thus activated by the same input 
in different people, and at different times in the same person. 
Different interpretations will then result. For example, the word 
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'field' will have quite different meanings according as it evokes 
resonances corresponding .to the schemas in advanced mathematics, 
electromagnetism, cricket, agriculture, or general scholarship. 

The second idea is due to Tall (1977) who has suggested that a 
schema can act as an attractor for incoming information. He took 
the idea from the mathematical theory of dynamic systems; but if 
we now combine it with the resonance model, we can offer an 
explanation of how this attraction might take place. Sensory input 
will be structured, interpreted, and understood in terms of which 
ever resonant structure it activates. In some case, more than one 
resonant structure may be activated simultaneously, and we can 
turn our attention at will to one or the other. In others, one schema 
captures all the input. (This 'capture effect' is well known to radio 
engineers, who have put it to good use.) 

So we may now synthesise the following ideas. 

s 
symbol systems surface structures 

8" e: 
"' 

;:,-
g ~;· 

;:,- ;:,-
0 !;l .... ~ 
~ 0 
""1 0 

;:1 

• and and 

~ 
0 
~ 
R. deep structures conceptual structures 

D 

Note that in the above diagram each point represents not a single 
concept but a schema, in the same way as a dot on an airline map 
can represent a whole city-London, Atlanta, Rome. 

How can this theoretical model help our thinking, and what are 
the practical consequences? All communication, written or oral, is 
necessarily into the symbol system at S. To be understood 
mathematically, it must be attracted to D. This requires that D is a 
stronger attractor than S. If it is not, S will capture the input, or 
most of it. 

One of the advantages of a good model is that it points up some 
questions we should ask n ext. The first is clearly: What-are the 
conditions for D t o be a strong attractor? Another is: can D capture 
the input instead of S? If so what happens? 

I will take the second first, briefly. If this were to happen, I think 
it would mean that all the mathematical activity was confined to a 
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deep conceptual level, and was not 'escaping' to a symbolic level at 
all. This may not happen completely, but some of the high-powered 
mathematicians who taught me at university suggest only very 
limited escape to S! 

Returning to the first question: what are the conditions for D to 
be a strong attractor? S has a built in advantage: all communicated 
input has to go there first. And for D there is a point of no return. 
In the years' long learning process, if the deep conceptual structures 
are not formed early on, they can never develop as attractors. For 
too many children, D is effectively not there. And if the D structure 
is absent or weak, all input will be assimilated to S: the effort to 
find some kind of structure is strong. So S will build up at the 
expense of D. 

But this guarantees problems, in view of the lack of internal 
consistency of S. This reveals a built-in advantage of D, that it is 
internally consistent. Of all subjects, mathematics is one of the most 
internally consistent and coherent. So if it gets well established, 
input to Swill evoke more extensive and meaningful resonances in 
D than in S, and D will attract much of the input. 

Doing mathematics involves the manipulation of certain mental 
objects, namely mathematical concepts, using symbols as combined 
concepts and labels. But for many children (and adults) these objects 
are not there. So they learn to manipulate substitute objects: empty 
symbols, handles without anything attached, labels without 
contents. This in the long run is much more difficult to do, though 
unfortunately in the short run it may be easier to learn. The 
manipulation of mathematical concepts is helped by the nature of 
the concepts and schemas themselves, which give a feeling of 
intrinsic rightness or wrongness. This arises partly from the 
concepts themselves, whose individual properties contribute to how 
we use them and fit them together. More strongly, it comes from the 
schemas, which determine what are permissible and non-permissible 
mental actions within a given mathematical context. 

The problems which so many have with mathematical symbols 
thus arise partly from the laconic, condensed, and often implicit 
nature of the symbols themselves; but largely also from the absence 
or weakness of the deep mathematical schemas which give the 
symbols their meaning. Like a referred pain, the location of the 
trouble is not where it is experienced. The remedy likewise lies 
mainly elsewhere, namely in the building up of the conceptual 
structures. 
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How can we help learners to do this? This is too large a question 
for a single paper, but here are some suggestions as starting points. 

(i) Particularly in their early years we can give children as many 
physical embodiments as possible of the mathematical concepts which 
we want to help them to construct. As examples of units, tens, and 
hundreds, we can use single milk straws, bundles of ten of these, and 
bundles of ten bundles of ten. These correspond much more closely 
to the relevant mathematical concepts than do the associated symbols, 
and so the visual input will be attracted more strongly to the rele­
vant parts of D than to S. In such cases, moreover, the input goes 
first to D, then to S, since the children are first presented with the 
physical embodiments of the concepts, and thereafter are asked to 
connect these with appropriate symbols. 

(ii) By careful analysis of the mathematical structure to be acquired, 
we can sequence the presentation of new material in such a way 
that it can always be assimilated to a conceptual structure, and not 
just memorised in terms of symbolic manipulations. Many existing 
texts show no evidence that this has been done. (See Skemp 1971, 
Chapter 2.) 

• 
(iii) Again in these important early years, it he~ps children if we 
stay longer with spoken language. The connection between thought 
and spoken words are initially much stronger than those between 
thoughts and written words or symbols. Spoken words are also much 
quicker and easier to produce. So in the early years of learning 
mathematics, we may need to resist pressures for children to have 
'something to show' in the form of pages of written work. 

(iv) It is often helpful to use informal, transitional notations as 
bridges to the formal, highly condensed notations of traditional 
mathematics. By allowing children to express their thoughts in their 
own ways to begin with, we are using symbols which are already 
well attached to their associated concepts. These ways of expression 
may often be lengthy, unclear, and differ between individuals. By 
experience of these disadvantages, and by discussion, children may 
gradually be led to the use of established mathematical symbolism 
in such a way that they experience its convenience and power for 
communicating and manipUlating mathematical ideas. ·~ 
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Mathematical Symbolism 

Derek Woodrow 

One of the essential distinguishing features of mathematics is its even-
tual dependence upon symbols and symbolic expression. Few attempts to 
determine those processes, activities, or contents which uniquely identify 
mathematics have succeeded. It is indeed questionable whether human 
knowledge can be classified into such self-contained categories. The many 
diverse activities of mathematicians do, however, have symbolic expression 
as their common feature, and the extent to which modern disciplines depend 
upon mathematics could be measured by their growing reliance on symbols. 
It is reasonable to surmise that much of the difficulty experienced by children 
in mathematics, and the lack of popularity of physical as opposed to biologi­
cal sciences in higher education, could be traced to the problem of symbolisa­
tion. It will be interesting to watch the effect on, say, geography as the school 
syllabuses move Mwards mathematical as opposed to descriptive aspects. 
There is surprisingly little apparent research into the use and learning of 
symbols, except for the many investigations into both the problem of how 
children learn to read and adult perceptual experiences with words (e.g., 
Coltheart 1972). There is, however, a real distinction between the use of 
symbols as a verbal language (spoken or written) and the use of symbols in 
the mathematical sense. It will indeed be suggested below that one activity 
interferes with the other. 

In normal reading activity the written word contains very many 
redundancies. There is clear experimental evidence that not only are 
many of the words used unnecessary and the number of letters per 
word quite extravagant but the letter symbols themselves are only 
partially scanned in many reading techniques. The reader only 
notices, say, the bottom of the letter and the relationship between 
the symbols is sufficient to determine them completely. Try reading 
the following doggerel: 

THR NC WS YNG MN WHS FC WS GRN? 
T WS TR THT LL WH~W HM FND HM TH STRNGS~ THNG 
THDSN 

The relationships between verbal symbols can also be seen in the 
way in which adults react and remember random letters. A collec­
tion ofletters such as POSTIC is much more easily read and remem-
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bered than XZBQT which proves much more difficult because it does not 
resemble the normal letter associations used in the English language. 

The redundancy which is normal in language is not usually present 
in mathematical symbolism at school level. Statements such as: 

3 + 4 + 10 + 3 . 2 = 20 . 2 
An B' = 0 
(3,4) + (4,5) = (7,9) 
4x2 + 3x + 2 = 0 

contains little redundancy, although the last example with experience 
can be seen to have a recognisable form in which one might only need 
to know the coefficients 4, 3, and 2. Even in this case however the 

' ' relevant distinctive information is contained inside the symbolisation 
which must therefore be read rather than just seen. Yet another com­
plication in mathematical symbolism is the phenomenon of temporary 
redundancy in which a whole group of symbols are at one stage carried 
without reading, only to need detailed reading later. For example: 

(12x2 - 2)2 - 2(12x2 - 2) + 1 = 0 12x2 = 3 
[(12x2 - 2) - 1]2 = 0 x2 = i 
12x2 - 2 = 1 X = ±! 

This becomes more apparent in the later stages oflearning mathe­
matics, and this variation in the degree of redundancy causes many 
problems for college and university students. 

Another distinction between the use of words and mathematical 
symbols is the independence of one symbol from the preceeding and 
succeeding symbols. The anecdote is related of the three-year-old who 
was arithmetically very advanced in that the addition of three digit 
numbers presented little difficulty. His parents expressed some con­
cern that he had no interest in reading; reputedly because letters 
behave irrationally, in the sense that whilst any sequence of digits 
make a sensible number a random sequence of letters do not make a 
word. In reading, the individual symbols do not themselves contain 
any meaning, whereas in mathematics, with a few exceptions such as 
d/dy or (),the meaning of the individual symbols is vital. 

Even more disturbing to the learner is the interrelationship of 
mathematical symbols where not only does each symbol have its own 
distinctive meaning, but this meaning is affected by its neighbouring 
symbols. Consider, for example, the schema attached to the symbol 2 
in 212, 1/2, V2, f(2), a2, a 2, IR2, 2'o-clock, 10012, (2,3), etc. In each case 
there are subtle changes in a basic schema which originally starts as 
a fairly low-level concept in 2 as used in the infant natural number 

290 Visible Language XVI 3 1982 

sequence but becomes a higher and higher level schema as mathe­
matics progresses. 

The essential concentration in school curricula on literacy tends to 
produce, therefore, a reading technique which to some extent inter­
feres with the technique required in reading mathematical symbols. If 
one accepts this proposition, then two implications arise: we must adapt 
mathematical symbolism for the learner, and we must follow a careful 
and structured plan to teach the pupil how to read mathematics. 

Figure 1. The arithmogon. 

Signs 
One of the usual ways of adapting mathematical symbols to the 
schema used by pupils is the use of signs such as boxes instead of 
symbols. Many books now in use make extensive use of boxes from 
a very early stage, frequently asking questions such as 3 + D = 7. 
Another interesting example is the arithmogon (Mcintosh & Quadling 
1975). In the arithmogon (Figure 1) the numbers which belong in the 
square boxes are the result of adding the numbers in its adjacent 
circle boxes. Many points of interest arise from the investigation of 
what numbers should be in the circles for given numbers in the 
squares. What is relevant to the present argument is the difference 
in schema attached to this problem compared to its presentation in 
the usual mathematical notation. Whilst many primary children 
could tackle the sign statement of the problem, it is doubtful if many 
early secondary school pupils would be able to manage the symbolic 
statement. 

{

x+y =8 

x+z=ll 

z+y=13 
Comparison of the two expressions 3 + D = 5 and 3 + x = 5 illus­

trates some of this difference between signs and symbols. The first 
uses the sign D to replace the missing number and the second uses x 
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in apparently the same way. The second expression carries with it, 
however, a much more abstract statement which says 'this particular 
example belongs to a whole class of things which can be dealt with 
in such-and-such a way.' In solving the first problem it really is the 
number which should be in the box which is the relevant factor, in the 
second it is the process of obtaining whatever number turns up which 
is relevant. Whilst this appears to be a post-operandi argument and 
to have import only at later stages in the learning of mathematics, 
experience points to the operation of such distinctions at an almost 
instinctive level. Children who cannot be at all aware of this distinc­
tion from experience react so differently to the use of a sign 0 than 
asymbolx. 

Rather surprisingly this distinction in the order of concept involved 
is echoed in adult perception. Coltheart (1972) reports an experiment 
in which observers are presented with a 3 x 4 matrix ofletters or 
shapes. After the display has been removed the observer is asked to 
remember a particular subset of the display chosen on the basis of 
position, colour, shape, or size. In the particular problem investigated 
this showed the existence of a short term memory of greater detail and 
scope than normal recall. What was rather surprising was that this 
short term intensive memory apparently failed to operate as effec­
tively when the display was a mixture of letters and digits and this 
distinction was used as a discriminant. This would suggest that the 
ability to distinguish between letters and digits is in some respect 
different from discrimination in position, size, shape, or colour. This 
might indicate, incidently, another of the great advantages of arabic 
place-value notation based upon position rather than earlier hiero­
glyphic representations which depend upon a higher level of symbol 
discrimination. It would be interesting to repeat the recall experi­
ments with young children to investigate if there is any particular 
age at which the distinction between signs and symbols, as defined 
here, becomes relevant. It seems very likely that the use made in 
mathematics ofletters for numbers is probably neither accidental 
nor irrelevant. 

It is clear that adults do not, indeed, experience much difficulty in 
handling signs in normal everyday life. There has always been an 
immediacy and ease in the use of signs for religious, political, and 
social reasons. Mere reference to scarab-beetles, fish, crosses, eagles, 
hammers and sickles, white feathers, tudor roses, fleur-de-lyse, and so 
on, produce immediate images and attract schemas from our memories 
which are full of vividness. Freud, and modern advertisers, have made 
this fully conscious. 'fraffic signs, laundry signs, and the markings on 
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electronic equipment illustrate the steady growth in the use of signs 
in modern life. The contrast of these signs with mathematical symbols 
illustrates the distinctive features of a sign, which is essentially a 
low level naming concept which identifies a single, identifiable, non­
adaptable idea. Symbols, on the other hand, are identified with high­
level schemas rather than concepts, and as such are more responsive 
to adaptations and multiple relationship. Three different types of 
symbolisation have therefore been identified: 

Language symbols. Contain high redundancy, great interdepen­
dence, and no individual meaning. 

Signs. Contain little redundancy, not interdependent and unaffected 
by neighbouring signs, represent single (naming) concepts. 

Symbols. Contain little redundancy, interdependent and adaptable 
to neighbouring symbolisms, related to schema. 

The Functioning of Symbols 
Skemp (1971) suggests ten different ways in which symbols are used: 
i Communication, ii Recording, iii Forming new concepts, iv Aiding 
multiple classification, v Explanation, vi Aiding reflective mental 
activity, vii Exlpbiting structure, viii Automating routine manipula­
tions, ix Recovering information, and x Producing creative mental 
activity. Not all of these are, of course, independent and more than one 
mode of functioning is often at play at the same time. In Skemp's clear 
descriptions of these roles for symbolisation certain underlying prob­
lems and ideas can be seen. At a high level of mathematics there is a 
clear contradiction between two characteristics of symbolic representa­
tion; the condensation which symbols achieve contrasts with their use 
as a precise language. Both these aspects relate to the early learning 
of mathematics in which symbols are used to name concepts and 
schemas, and yet in different contexts we change and adapt these 
schemas to meet different needs, without always changing the symbol. 
(Perhaps we need vari-focal symbols to complement the idea ofvari­
focal concepts presented in Skemp 1979.) 

Symbols as Names 
Skemp comments 'It is largely by the use of symbols that we achieve 
voluntary control over our thoughts,' and the ability to name a thing 
has always conveyed contr~lling power in both Greek and"Nordic 
mythology. In answer to 'What is the largest number,' the word 'infinity' 
settles all discussion, and the fact that the solutions to x2 

- x + 1 = 0 
are complex satisfies most enquiries even though the hearer may have 
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no clearly defined meaning for the words. Mathematics is usually 
concerned with higher order concepts for which the defining examples 
are other concepts, and these can only be expressed in verbal or sym­
bolic form. Just as the young child must have the certainty of conser­
vation of his physical observations before being able to operate with 
them, so the student of mathematics must be assured of the certainty 
of the lower level concepts before he can build with them. One of the 
major roles of symbols lies in communicating and holding these con­
cepts with others, or with oneself in internal reflection and argument. 
In identifying three types oflistener-the 'don't knows,' the 'want to 
know more,' and the 'critics' - Skemp illustrates the different contexts 
in which schema, and hence symbols, undergo subtle changes. These 
range from naming a general target area in which the concept is al­
lowed to be fuzzy but the direction of clarification is hopefully indicat­
ed, through periods in which some concepts are clarified whilst others 
are left vague, until in the critical stage every symbol has its own spe­
cific and precisely defined meaning. The student not only passes through 
these stages in turn, but passes through them more than once as con­
cepts are continually redefined. This is not only true of high level con­
cepts such as integration, but even early in the secondary school level 
the uses of 7T and v'2 illustrate the variety of conceptual contexts. 
Similarly the continual redefinition of multiplication has led to the 
introduction of the idea of group properties in an attempt to establish 
a conserved concept which is unvarying enough to be built upon. In 
the same way the idea of function compared to relation reflects a need 
to distinguish between two different uses of variables which otherwise 
cause a disturbing vagueness. 

If communication is to be meaningful, it is clear that the symbol 
used to signal a schema in one person must signal the same schema in 
his correspondent. One ofthe problems in the use of symbols by pupils 
is that the teacher has frequently condensed his early use of multiple 
concepts and symbols into a single one. Thus, for example, the develop­
ment of the concept of subtraction involves a variety of different lower 
level concepts such as 'take away,' 'how much bigger,' 'what is the dif­
ference between,' out of which is generated an underlying idea. Until 
the child has developed this underlying concept the use of the same 
symbol for different concepts can cause problems, and it is important 
that the symbolism should mirror the different activities. On occasions 
it is therefore necessary to use two or three symbols (or rather signs) 
in the early stages. (The reader is invited to describe the activities 
symbolised in the following list.) 
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5-3=2 

(5,3~2 

5+0=2 

5~2 

5+-3=2 

~---~~ 5-3=2 

The same tendency for symbols to outreach the attained concept 
can be seen in the use of - 1 and +3 for the directed numbers, and many 
teachers have encountered difficulty which pupils have with notations 
such as ( )-1

• This really denotes a multiplicative inverse, but in situa­
tions such as sin- 1x the connection with any multiplication situat ion 

is far from obvious. Even the equivalence of¥ and 3 ..;.. 7 is not at all 

easy to establish. 

The Introduction of Symbols 
There is an apparent confusion in the work of both Skemp and Dienes 
on the introdttction of the name of a concept (its symbol) early in the 
learning process. 'lb quote from Dienes (1964): 'The most likely reason 
for the general ossification of mathematics in children's minds at an 
early stage is the rash use of symbols, i.e., the introduction and man­
ipulation of symbols before adequate experience has been enjoyed of 
that which is symbolised' and 'the apprehension of structures and the 
symbolisation process are not altogether distinct, and in fact there is 
reason to believe that each acts as a stimulus on the other.' 

Similarly Skemp (1971): 'Making an idea conscious seems to be 
closely connected with associating it with a symbol' and 'Concepts of 
a higher order than those which a person already has cannot be com­
municated to him by definition, but only by arranging for him to 
encounter a suitable collection of examples.' 

Both writers are really talking about symbols as representing 
structures, (central unifying ideas, schemas) as compared to signs 
representing low level concepts. Skemp makes the point that there is 
a distinction between reflecting on content and reflecting on form 
which is relevant in this~ontext, since the level of cont~t is that of 
naming concepts. This distinction clearly relates to Piagees distinction 
between concrete operational and formal operational thinking. The 
usually suggested ages for maturing from one mode to the other (in 
general between about 12 and 16 years of age) would indicate a need 
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to persist with less flexible signs related to content rather than symbols 
related to form. The timing of this change from the particular to the 
abstract is implicit in the good teacher, but there has been little re­
search to make it explicit and therefore more transferrable. (The Con­
cepts in Secondary Mathematics Project reported by Hart [1981] has 
produced some interesting work in this area.) 

The premature introduction of symbols to represent structures leads 
to pupils developing incorrect and inflexible schemas. Once a schema 
is established it tends to be firmly held, and pupils tend to alter their 
perception of contradicting concepts in order to fit them into their 
schema. One difficulty which many secondary pupils have in reading 
problems is that they construe the words so as to fit their firm schema 
rather than accept the intended meaning. This is one of the problems 
with the traditional model example and practice and theorem followed 
by rider methods of teaching mathematics which leads to externally 
imposed schema at too early a stage. This tends to encourage inflexi­
bility and hence later a limited range of application of the schema. 
The method does, however, give those gifted pupils who can accommo­
date and change their schema an appreciation of the structure and a 
language in which to discern the form of mathematics. 

The recent trend towards individualised learning methods, on the 
other hand, do give the pupils a broad base oflow level concepts from 
which schema can be built. They allow the pupil to mark out the terri­
tory of a symbol by using it initially more as a temporary sign for a 
limited content, related to a short piece of work. These methods, 
however, seem to have difficulty in developing symbols relating to 
underlying structures. Because the pupils are using low level signs, 
they are not easily led to consider high level relationships. This ab­
sence ·of a symbolic language in which to recognise higher concepts 
leads the pupil to concentrate on easier low level concepts for which 
the language is available. The broad base of the triangle of mathe­
matical knowledge which these methods create can be dissipated 
unless the pupils are also given the language and encouragement to 
build from this base. 

The changes in content during the 1960's led to a considerable 
increase in the use of symbols; the introduction of set notation, func­
tional notation, vectors, matrices, symbols for inverses, magnitudes, 
and logic. That this plethora of symbols did not cause any real distur­
bance might superficially seem a little surprising. The introduction of 
extra symbolism, however, serves to give the pupil more language in 
which to express and refine his ideas. Many of these new symbols were 
also operating at the level of signs, representing low level concepts 
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-
and distinguishing between ideas which were otherwise confused 
within the same symbol. One of the major problems which did become 
apparent was the insecurity of teachers with this symbolism, and this 
led to a pedantry which was out of step with the initial intentions of 
some reformers but which nevertheless came to be one of the charac­
teristics of the changes. When a symbol is not securely understood, the 
edges of its meaning are avoided. There was a confusion, too, between 
the use of a symbol in the classroom for a single concept and the use of 
the symbol in more developed mathematics for a whole structural 
idea. This was enhanced by the teacher's own enjoyment in having 
mastered something new and wishing to pass onto the pupil immedi­
ately this whole concept of mathematical structure which had often 
escaped him (the teacher) in the past. The halo effect caused by this is 
unfortunately transitory. To mix the metaphors thoroughly, jumping 
from bandwagon to bandwagon can be exhilarating for teacher and 
pupil but is ultimately very tiring! 

Whilst some features of these reforms will gradually disappear, 
some of the notational innovations will continue to prove advan­
tageous. The contrast of the algebra of vectors and matrices with the 
algebra of number serves to help identify the more usual manipula­
tions and encourage an appreciation of their structure. The avail­
ability of a symbol for magnitude can serve usefully to identify this 
particular idea from within more complex concepts (provided that it 
is used when required and not when it is superfluous). The idea of 
placeholders, solution sets, and function have not so far proved 
effective in the crucial problem of dealing with variables. The variety 
of concepts attached to, say, y = 3x + 2 needs a much more varied 
notation in the early stages. The confusion between when x andy are 
specific values (e.g., simultaneous equations) or representational 
values (drawing graphs or expressing a generalisation) or true 
variables (expressing abstract conceptual relationships) is present 
throughout mathematics and only sophisticated schema can really 
distinguish between them and accept their equivalencies. Many 
situations we present to students contain all three meanings at 
different stages within the same problem and the students certainly 
have difficulty and uncertainties· as a result. The teacher, indeed, has 
subsumed these concepts into one schema needing one symbol, and 
since he does not need to differentiate he loses the facility: 

The introduction of the ideas of functions and relations for use in 
different situations was an attempt to clarify this for the pupil, but the 
discrimination is only partly accomplished, and the general tendency 
to adopt only one or the other notation regardless of the problem con-
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cerned led to little overall improvement. More flexibility is certainly 
needed in the early stages of algebra, and less pedantry. Use could 
be made of boxes, circles, triangles, etc., when specific values are 
intended, and pupils should be encouraged to invent symbolism for 
unknown quantities and for representational situations such as 
generalised statements for patterns, e.g., sequences. The pupil's 
recognition of a need is often the best springboard for symbolism, 
and that symbolism must reflect that need. Mathematicians, indeed, 
use a great deal of implicit discriminants, such as using x, y, z for vari­
ables, a, b, c for coefficients, k, l , m for constants, and even using 
Greek letters, 'curly' letters, and so on. These distinctions are not 
readily discernable by the learner nor always conscious in the teacher 
and more distinct symbolisation is needed in the early stages, with 
the more usual conventions being allowed to grow slowly. 

Symbols which Unify and Separate 
One of the recurring problems is the use of a symbol on one hand to 
distinguish between concepts and on the other to unify concepts into 
more useful general schema which ignore irrelevancies. The result is 
that pupils cannot focus on either the woods or the trees. The value of 
symbols in developing simplifying structural schemas is very evident. 
The idea of differentiation as an operator leads to (D 2 + 2D + 1)y = 0 
with an immediate recall of a known schema, and the possibility of ex­
tension to higher order. At a similar level of study the introduction of 
complex numbers in the form rei8 can, and should, be dramatic. Indeed 
the variety of forms of complex numbers is also a good example of the 
use of symbols to distinguish between different facets of the same con­
cept. Similarly at an earlier stage the use of different expressions-
16 = 2 x 8 = 7 + 9 = 42 =52

- 32 = .... . -servetoemphasise 
different features. The expressions 16 = 1 + 15 = 2 + 14 = 3 + 13 = 
.... identify both different partitions and also a common feature. In 
introducing set language the need for a set to be well-defined is usual­
ly stressed, followed very soon by Venn diagrams in which the only 
specification is 'subsets of the Universal set.' Particularise, for exam­
ple, the situations shown in Figure 2. 

Figure2. 
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The use of a 112 is an interesting situation in that it is at the same 
time the 'opposite' or 'inverse' of a 2 and also merely an extension of the 
exponential process a 3 a 2 a 1 

... a 0 .• • . Consider the distinctions and 
similarities of the three statements: 

A. x + y = 7 B. The lines x + y = 7 C. (1 1) fx) ( 7) 
3x + 2y = 15 and 3x + 2y = 15 and 3 2 \y = 15 

their intersection. 
InA ,x andy are specific particular values whilstinB there are two dif­
ferent independent variables and two different dependent variables which 
(since they are in one plane) can take the same values simultaneously 
at the intersection. In C, x andy are characteristics of a single vector 
quantity. For the teacher with a well developed schema of ordered 
pairs there is value in using the same letters in all three situations. 
The pupil is likely to be in a situation similar to the pre-conservation 
era ofPiagetian theory and unable to appreciate the constancies within 
these three examples. They therefore serve merely to confuse until 
'the penny drops.' Unless the appreciation occurs reasonably early in 
the learning process this confusion passes past its initial usefulness 
(in altering the pupils' schemas into more useful ones based on higher 
level categm1sations) into dismay and rejection. 

The linear function f(x) = mx + c (or y = mx + c) is another inter­
esting example. 'Ib the teacher, conscious of many other functions, the 
role ofm and c in determining the behaviour of the function is very 
clear. 'Ib the pupil this is hardly a linear function at all but many differ­
ent functions, since the importance of linearity only arises in contrast 
to many non-linear functions. His concentration is solely on the many 
values of m and c and therefore each function is distinct and individual. 

Nevertheless, without the use of similar notations the crucial 
structural categorisations may remain hidden. What is needed at 
school level are notations in which both similarities and differences 
are evident. At a higher level such notations are normal, for example 
d / dx and ajax, I and~. log and ln x, sin x and sinh x. The need of 
mathematicians for this kind of clued notation has not been reflected 
in our school notations where the need is likely to be much greater. 

Some Tentative Implications 
The attachment of symbbls to structural schemas rather than simple 
concepts would suggest that they come into play only in the latter 
stages of learning mathematics. This is related to the teaching feature 
stressed by Skemp in the use of one sign or symbol for one concept or 
schema of the learner. In the early learning of algebra, symbols are 
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used not only for different concepts but also for different types of 
concept such as particulars (missing numbers), generalisations 
(extensions of pattern), and abstractions (expressions for structure or 
form). These are distinctive elements, which being distinctive need 
distinctive notations. 

There has been a tendency for some years to use non-literal signs such 
as boxes in the early stages of the algebra of unknowns, and the intro­
duction of the term 'placeholder' was indicative of this trend. In the 
early 1960's R. G. Davies made an interesting film of a lesson in which 
one group of children devise a relation between 8. and 0 to produce an 
answer 0 . The other children by specifying trial numbers for 8. and 0 
and being told the resultant 0 try to establish the relation. These 
introductions to algebra have never, however, succeeded in becoming 
more than trends. The arguments in this article suggest a much 
greater extension and development of their use. The introduction of 
literal signs brings with it a greater feeling of permanence, and it is 
essential that this permanence does not a lso produce rigidity, since 
even simple concepts must adapt and change as maturity and sophis­
tication grow. The discussion has led to a plea for a greater range and 
variety of literal symbols in the early stages, which can both serve to 
distinguish and unify. The arbitrary and indiscriminate use of any 
letter in addition to the ubiquitous x does not in itself satisfy both 
these requirements, but a carefully thought-out development in which 
similar situations had similar but distinct notations is needed. One 
common example is the use of bold or italic letters for vectors, points, 
and magnitudes. In establishing the underlying structures of which 
algebra is the manifestation not nearly enough attention has usually 
been paid to the importance of having non-examples available to help 
establish characteristic qualities. In particular, the concentration on 
an analysis oflinear functions in most school syllabuses is attempted 
without sufficient attention to establishing the concept of linear func­
tions. Indeed, the idea of operators and function machines rather than 
more general functions would seem much more pertinent in school 
mathematics, since the pupil has a much greater variety of experience 
upon which to draw. This is also reflected, perhaps, in the complaints 
of teachers of other subjects to whom the higher level idea of a nmc-
tion seems hardly as relevant. They desire the ability to manipulate 
single operators in sequence, whereas the concept of a function is an 
appreciation of the results of combining multiple operations. 

This approach leads to a stress early in the course on topics similar 
to the traditional transformation of formulae but placed in a less 
algebraic setting by the use of diagrams and flow charts; e.g., such 
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Solve: Jx + 2 = 5 
Figure 3. 

II II 

representation as shown in Figure 3. This approach could build upon 
some ofthe work contained in some primary school syllabuses-(see 
Fletcher 1971). This use of operators leads naturally to the use of 
functional notation for combinations of operators at a later school 
stage. In the early stages of studying functions, pedantic mathema­
tical distinctions of notation should not be demanded of the pupils, 
even though the teacher may well choose his own notation for a 
situation in anticipation of more advanced criteria. As the pupils' 
schemas develop so the notation can be refined; all that is necessary 
is the availability of suitable notations when the need for these re­
finements arise. 

It is likelythat we teachers will find it difficult to alter our own 
notational schemas to fit the pupils' needs. Just as teachers deplore 
the inability of their pupils to solve a + bx + cx2 = 0 so we may have 
difficulty in making such simple but useful adaptations as using 
Ax2 + Bx + C = 0 or f(x) = Mx + C. Such a change may seem trivial 
to the teacher who intuitively distinguishes between coefficients and 
variables (unknowns?). The change in size of notations, however, 
suggest such a distinction much more clearly to the pupil. 

The importance of symbolism in mathematics is indisputable, but 
we have little research evidence on the learning of mathematical sym­
bols. There is a great deal of expertise known to experienced teachers. 
Much is accomplished by hand-waving and individual ad-hoc symbols, 
but this needs to be externalised and theorised so as to become avail­
able to the whole community of mathematics teachers and to help 
overcome deficiencies ofboth syllabuses and texts. The lack of teach­
ers with a secure and sound training in mathematics is unlikely to be 
overcome quickly, and without security there is no flexibility. It is 
therefore increasingly u,rgent that advice which rests upon a syste­
matic and realistic theory of learning is made available. 
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